
LChecker: Detecting Loose Comparison Bugs in PHP
Penghui Li

Chinese University of Hong Kong
phli@cse.cuhk.edu.hk

Wei Meng
Chinese University of Hong Kong

wei@cse.cuhk.edu.hk

ABSTRACT

Weakly-typed languages such as PHP support loosely comparing
two operands by implicitly converting their types and values. Such
a language feature is widely used but can also pose severe secu-
rity threats. In certain conditions, loose comparisons can cause
unexpected results, leading to authentication bypass and other
functionality problems.

In this paper, we present the first in-depth study of such loose
comparison bugs. We develop LChecker, a system to statically
detect PHP loose comparison bugs. It employs a context-sensitive
inter-procedural data-flow analysis together with several new tech-
niques. We also enhance the PHP interpreter to help dynamically
validate the detected bugs. Our evaluation shows that LChecker
can both effectively and efficiently detect PHP loose comparison
bugs with a reasonably low false-positive rate. It also successfully
detected all previously known bugs in our evaluation dataset with
no false negative. Using LChecker, we discovered 42 new loose
comparison bugs and were assigned 9 new CVE IDs.

CCS CONCEPTS

• Security and privacy→Web application security.

KEYWORDS

PHP; Loose comparison bugs; Authentication bypass
ACM Reference Format:

Penghui Li and Wei Meng. 2021. LChecker: Detecting Loose Comparison
Bugs in PHP. In Proceedings of the Web Conference 2021 (WWW ’21), April
19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3442381.3449826

1 INTRODUCTION

Comparison is an essential programming feature. Strongly-typed
languages, e.g., Python, perform strict comparisons that consider
both the values and the types of the comparison operands. In con-
trast, weakly-typed languages provide the identical and not identi-
cal operators (===, !==) for strict comparisons, and the equal and
not equal operators (==, !=) for loose comparisons. Loose compar-
isons can implicitly convert the operand types, thus allowing for
comparing operands in different types.

Loose comparisons are supported in many programming lan-
guages, such as PHP, JavaScript, and Perl. In particular, loose com-
parisons are widely used in PHP programs (§2.1). At run time, PHP
can automatically convert an operand’s type and specially interpret

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449826

its value. This is also known as type juggling [40, 46]. For instance,
("0e12345" == "0e67890") is evaluated as True, because PHP in-
terprets these two string operands as the integer 0 (see §3.1 for
more details), whereas most (if not all) people may intuitively think
the result shall be False. Consequently, loose comparisons could
sometimes produce unexpected comparison results and break the
intended program functionality. We call such loose comparisons
that cause unexpected results as loose comparison bugs.

Loose comparison bugs can be exploited for malicious purposes
and have severe security impacts. Previous reports have shown
that attackers can exploit loose comparison bugs to bypass au-
thentication and escalate privilege [34, 51]. The bugs can also be
leveraged for executing system commands and overwriting system
files [31]. Although prior research has studied some type system
bugs, loose comparison bugs and the relevant security issues have
not been well studied. TypeDevil [44] and Phantm [25] could detect
type inconsistency bugs—a different class of type system bugs—in
JavaScript and PHP. Backes et al. [6] discussed the possibility of
applying their graph traversal based method to magic hash bugs,
which are one class of loose comparison bugs as we will introduce
later (§2.2). Nevertheless, to the best of our knowledge, there exists
no tool that can effectively detect loose comparison bugs.

In this paper, we aim to fill the gap by developing approaches
to detecting loose comparison bugs in applications developed in
PHP—the most popular server-side programming language used
by 78.8% of websites [53], and studying their security impacts.

Detecting loose comparison bugs is challenging. First, loose com-
parison is a language feature and is not a bug unless incorrectly
used in the program. It is non-trivial to develop methods to well dif-
ferentiate incorrectly used loose comparisons from the normal ones.
In particular, a specification covering different kinds of misuses is
needed. Second, loose comparison bugs belong to general logic bugs
as they do not break code properties and semantics. Therefore, it is
difficult to find indicators of attacks exploiting them. Moreover, it
can be challenging to find such bugs in modern applications, which
may have a massive code base with millions of lines of code. Last
but not the least, the dynamic nature of PHP makes the inference
of variable types very difficult, which is necessary to determine if a
loose comparison can be potentially exploited or not.

To overcome these challenges, we first empirically study known
loose comparison bugs and characterize them. Based on our find-
ings, we provide a formal definition of loose comparison bugs,
considering both the sources and the types of operands, and ex-
cluding the legitimate uses of loose comparisons. We then develop
LChecker—a tool specializing in detecting loose comparison bugs.
LChecker performs a taint analysis to identify loose comparisons
that can be controlled by attackers through malicious inputs. It also
employs a type inference algorithm to overcome the challenge of
determining the types of variables in dynamic languages such as

https://doi.org/10.1145/3442381.3449826
https://doi.org/10.1145/3442381.3449826
https://doi.org/10.1145/3442381.3449826

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Penghui Li and Wei Meng

Table 1: Distribution of loose comparisons and strict comparisons

in the GitHub 1,000 most highly-rated PHP repositories. LC and SC

denote loose comparisons and strict comparisons, respectively.

Projects Operations

LC only SC only LC & SC LC SC

11 226 731 259,244 335,103

PHP. LChecker’s static analysis is scalable as it employs a context-
sensitive function summary in its efficient inter-procedural analysis.
The summary can assist in finding nested bugs that only manifest
when certain functions are called with special inputs. We also en-
hance the PHP interpreter to help validate the bugs with minimal
human efforts.

We implemented a prototype of LChecker for PHP and will
release the source code of our prototype implementation. We thor-
oughly evaluated LChecker on 26 popular PHP applications, in-
cluding around 38.7K source files and 7M lines of code. Our eval-
uation demonstrates that LChecker can effectively and efficiently
detect loose comparison bugs. LChecker successfully identified all
eight known bugs, and 42 previously unknown ones with a reason-
ably low number of false reports, in only 75 minutes. Furthermore,
LChecker outperformed the only relevant state-of-the-art analysis
tool by detecting 37 more bugs. We reported all new bugs to the
relevant vendors and were assigned 9 new CVE IDs.

In summary, this paper makes the following contributions:
• We conduct the first systematic study on loose comparison
bugs in PHP. We characterize known loose comparison bugs
and propose a formal definition of such bugs.

• We design and develop LChecker, a tool to detect loose
comparison bugs in PHP.

• With LChecker, we detect and confirm 50 (including 42
previously unknown) loose comparison bugs.

2 UNDERSTANDING LOOSE COMPARISON

BUGS

Loose comparison, e.g., ==, is a language feature in weakly-typed
languages and is commonly used in software development. Many
languages follow a well-defined type standard in computing loose
comparison results. In this section, we present our preliminary
study on understanding the prevalence of loose comparisons in
real-world applications (§2.1). Besides, we collect known loose com-
parison bugs in the CVE database to study their characteristics and
security impacts (§2.2). Moreover, we discuss existing work about
loose comparison bugs (§2.3).

2.1 Loose Comparisons

We downloaded the top 1,000 (by star number) PHP repositories
on GitHub in May 2020. We failed to parse and analyze 32 projects
due to the syntax errors in them. We counted the number of (loose)
equal comparisons and (strict) identical comparisons in the rest 968
projects.

The results are shown in Table 1. We use LC and SC to denote
loose comparisons and strict comparisons, respectively. In summary,
742 (76.65%) projects used 259K loose comparisons and 11 projects
used only loose comparisons; 957 (98.86%) projects used 335K strict

Table 2: PHP loose comparison procedures in order of priority.

Operand 1 Operand 2 Computation Procedures

Null/String String (1) Convert operands to Number if applicable
(2) Lexical comparison

Null/Bool Anything Convert both operands to Bool

Number String Translate String to Number

1 <?php
2 /* retrieve userdata from database */

3 $result = $db->query("SELECT id, passwd FROM members

WHERE name = '".$_POST['user']."'");

4 $userdata = $db->fetch_result($result);

5

6 /* password validation */

7 if (!$userdata['id'] || md5(stripslashes($_POST['
passwd'])) != $userdata['passwd']) {

8 /* login fails */

9 } else {
10 /* login succeeds */

11 $session ->update(NULL, $userdata['id']);
12 }

Listing 1: A loose comparison bug in CVE-2020-8088.

comparisons and 226 projects used only strict comparisons; 731
projects used both loose and strict comparisons. The results suggest
that those PHP developers extensively used loose comparisons,
where 43.62% of the comparisons were loose ones.

2.2 Loose Comparison Bugs

Unlike strongly-typed languages, weakly-typed languages employ
implicit type conversion to allow comparisons between differently
typed operands. PHP follows the procedures listed in Table 2 to
handle a loose comparison. For example, a string is implicitly con-
verted into a number when compared with a number. Even the
operands are of the same type, implicit type conversion can still
happen. For example, in ("12" == "10"), the two String operands
are actually compared as numbers as in (12 == 10).

However, automatically converting operand types and values in
loose comparisons can be problematic. Developers usually use loose
comparisons in conditional statements. The comparison strategies
can result in strange comparison results that lead to unexpected
program behaviors, e.g., an unexpected path is taken. We infor-
mally name these unexpected loose comparison problems as loose
comparison bugs. We will provide a formal definition in §3.1.

2.2.1 A Motivating Example. Listing 1 shows an example of a loose
comparison bug in UseBB (1.0.12) (CVE-2020-8088 [13]) that ex-
ploits a magic hash bug. The user authentication can be easily
bypassed without correct credentials. In lines 3-4, the user informa-
tion is first retrieved from the database with a user-provided user-
name ($_POST[‘user’]). Line 7 validates the credential by check-
ing whether (1) the user ID ($userdata[‘id’]) is set, and (2) the
user-provided password matches the one in the database. The
stripslashes() function removes backslashes from a string. The
md5() function computes the hash value of a string by generating a
32-character (128-bit) hexadecimal string. The password stored in
the database ($userdata[‘passwd’]) had been hashed previously.
If the conditional statement in line 7 is evaluated as False, the

LChecker: Detecting Loose Comparison Bugs in PHP WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

program determines that the authentication is successful and takes
the else branch (lines 9-11) to update the user session data.

However, an attacker can trick the program into taking the else
branch even without providing a correct password because of the
loose comparison bug in line 7, if the hashed password string is
specially formatted. For instance, if the correct original password
is "QLTHNDT", the loose comparisons with the hash values of many
other strings, e.g., "PJNPDWY", can be True. This is because the hash
values of the two different passwords are the string representations
of zero in scientific notation, as shown below:

md5("QLTHNDT") = "0e405967825401955372549139051580"

md5("PJNPDWY") = "0e291529052894702774557631701704"

They both represent numbers like 0 × 10𝑛 , where the exponent 𝑛 is
a huge integer specified after the letter ‘e’ in the string. Although
the two hash values are in String type, they are automatically
converted into the integer 0 in the loose comparison. As a result,
the condition in line 7 becomes False and the program takes the
else branch as if the provided password is correct, thus granting
the attacker the privilege of the victim user.

2.2.2 Investigating Known Loose Comparison Bugs. We collected 13
known loose comparison bugs in the recent five years from the CVE
database. These bugs span 12 PHP applications, including popular
ones like WordPress [10]. We present our findings below.
Finding 1: 12 out of the 13 known loose comparison bugs are au-
thentication bypass vulnerabilities.

Authentication is the process of verifying the identity of certain
users or parties. It is a necessary component in modern software for
performing diverse tasks, e.g., access control. These vulnerabilities
allow an attacker to bypass certain critical authentication checks
even without correct credentials. Bypassing authentications results
in privilege escalation, and further allows attackers to perform
other attacks such as sensitive information exfiltration and cross-
site scripting under different security contexts [56].
Finding 2: 11 out of the 13 known loose comparison bugs exploit
hash strings.

The hash functions in PHP usually produce strings that are base-
16 encoded, e.g., "0e405967..." as in the above example. In loose
comparisons, if the characters after the prefix ‘0e’ are all digits,
the whole string is treated as a number [55]. Although the hash
value is in String type, it is converted to an integer 0 in the context
of loose comparisons. We find that such scientific notation strings
of zero are the dominant cause of the existing bugs.
Finding 3: Loose comparison bugs can cause severe security conse-
quences.

We summarize the security impacts of loose comparison bugs
into the following three categories. (1) Privilege escalation. Attackers
might gain access to resources that are normally protected from an
unauthorized user through bypassing certain loose checks. In the
example of Listing 1, the attacker can authenticate without a correct
credential and then get the privilege of the victim user. (2)Malicious
content injection. Loose comparison bugs can be used to inject arbi-
trary content into an application to perform malicious actions. This
brings the possibilities of some second-order attacks [16], arbitrary
code execution [6], etc. (3) Correctness violation. Loose comparison

bugs can also lead to functionality bugs because the program exe-
cution can deviate from the intended flow. The functionality can
be broken if some necessary code blocks are not executed or the
wrong blocks are executed because of loose comparison bugs. As a
result, the program cannot complete the intended tasks and may
crash.

2.3 Existing Work

Many methods for detecting diverse types of bugs in PHP, such as
SQL injection, cross-site scripting, etc., have been proposed. They
make use of static analysis and dynamic analysis. However, to the
best of our knowledge, there exists very limited study on loose
comparison bugs. Backes et al. proposed a graph traversal method
to detect vulnerabilities in PHP [6]. The authors also discussed
the possibility to apply such a method to the magic hash problem.
Spaze et al. further collected an exploiting dataset for such magic
hash cases [48]. However, apart from the magic hashes that these
works studied, many other types of loose comparisons could pos-
sibly have severe security impacts. Besides, some works screened
cryptographic API misuse vulnerabilities [26, 45], which might also
lead to authentication bypass. Nevertheless, these works did not
study the language-specific aspect of such vulnerabilities. We are
thus motivated to further investigate loose comparison bugs and
improve the existing works.

3 PROBLEM STATEMENT

In this section, we formally define loose comparison bugs and
present our threat model, research goals, and research challenges.

3.1 Definition of Loose Comparison Bugs

Loose comparison as a language feature, if inappropriately used,
can result in security issues. In detail, we define loose comparison
bugs based on the following three conditions.
Cond1: User-controllable loose comparisons. A loose compar-
ison bug should involve data from an untrusted source, e.g., user
inputs, so that it can be exploited by an attacker. To form a loose
comparison bug, at least one operand of the loose comparison needs
to come from an untrusted source.
Cond2: Exploitable operand types. Only data in certain types
can be implicitly converted into another type in loose comparisons,
and thus brings about potential security issues. As shown in Ta-
ble 2, Null, Bool, Number or String operands can be converted into
a different type (and thus exploited) in loose comparisons. We con-
sider only loose comparisons of which the operands are in these
exploitable types as potential bugs.
Cond3: Inconsistent comparison results. Besides the types,
the operand values also matter. In the examples we studied in
§2.2.1, the string operands are interpreted as numbers whose con-
ventional string representations (e.g., "0") are different from the
literal strings of the operands (e.g., "0e405967..."). Consequently,
the loose comparison results become unexpected and inconsistent.
Loose comparison bugs result from such inconsistent comparison
results, which happen when the actual runtime comparison results
by comparing the implicitly converted operands are different from
the (expected) results by comparing the operand literal values.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Penghui Li and Wei Meng

3.2 Threat Model

In our threat model, we assume a remote attacker who can interact
with an application in a weakly-typed language (PHP) through
only the normal interfaces specified by the developer. The attacker
may have access to the source code of the target application (which
can be an open-source project) and identify the loose comparison
bugs. The attacker tries to craft special inputs to exploit the loose
comparison bugs, e.g., to bypass a security check that uses a buggy
loose comparison. We do not consider other orthogonal attacks in
the threat model.

3.3 Research Goals and Research Scope

In this work, we aim to systematically study loose comparison bugs.
We aim to develop methods to detect such bugs in PHP applications
with a low false-positive rate. We do not, however, aim to detect
all loose comparison bugs, i.e., our method is not sound. We aim
to also study the main causes and the security impacts of loose
comparison bugs in real-world scenarios.

We particularly study three common classes of loose comparison
bugs in our work. In each class, an attacker can leverage a type of
unexpected values to bypass loose comparison checks. We call the
following types of special strings as magic strings in this work.
U1: Scientific notation strings. PHP can interpret a scientific
notation string as a number. For instance, any string that matches
the scientific notation regular expression ‘0e\d*’ is evaluated as
an integer zero when being loosely compared with a similar string
or a number. We have shown how magic hash bugs use magic zero
strings to bypass loose comparison checks in §2.2.1. In addition to
magic zeros, scientific notation strings can also be automatically
converted into other numbers. In string-to-string comparisons, im-
plicitly converting scientific notation strings into numeric values
is unacceptable in most cases. We believe that, only in rare cases,
developers deliberately use such indirect scientific notation string
representations for simple numeric comparisons. Thus, scientific
notation strings should not be compared loosely in most programs.
U2: Numeric strings. Like scientific notations, other numeric
strings can also be interpreted as numbers. As shown in the first row
of Table 2, numeric strings are converted to numbers for numeric
comparisons. This means, if two operands are numeric strings, the
loose comparison is actually performed as a numeric comparison.
In addition, multiple extra leading zeros can be added to the front
of the strings without changing the numeric values. For example,
to let ($x == "0.1") be True, $x can be "0.1", and similar strings
with many leading zeros, such as "00.1", "000.1", etc. Regardless
of the number of leading zeros, they are all evaluated as 0.1 in the
loose comparison, though they are literally different strings.
U3: Numeric-prefix strings. Some string as a whole may not be a
valid number. However, if one of its prefixes is a valid numeric string,
the prefix is converted into a number for being loosely compared
with Number and Bool values [39]. For instance, to let ($x == 0.1)
be True, besides 0.1 and "0.1", $x can also be many other strings
starting with the prefix "0.1", such as "0.1xy", "0.1xyz", etc. This
is because all these strings are cropped and evaluated as the float
number 0.1 in the loose comparison.

The above loose comparison cases are semantically correct. How-
ever, they can potentially cause problems because the loose com-
parison checks can be bypassed in an implicit and unexpected way.
Several studies [28, 40, 46] have demonstrated the potential risks
caused by such strange/unexpected comparisons.

3.3.1 Attack Feasibility. Attackers would have a very high advan-
tage in bypassing a security check that uses a buggy loose com-
parison. Assume the developer compares two strings generated by
a collision-resistant hash function, which uniformly hashes any
input to a 32-character (128-bit) hexadecimal string [8, 18]. If the
attacker can control the input string to be hashed and then com-
pared with the stored password hash value, in a strict comparison,
the probability to find a collision with the password "QLTHNDT" is
1/2128 = 2.94 × 10−39 in a single attempt.

However, in a loose comparison, to match the same password, the
attacker needs to only produce one magic zero hash string (U1) with
the probability 1030/2128 = 2.94 × 10−9, which is 30 orders of mag-
nitude higher. Further considering zero-prefixed strings (U2), the
probability is increased to

∑32
𝑖=2 (1/16)

𝑖 · (10/16)32−𝑖 = 3.27×10−9.
Moreover, there are existing collections of magic zero strings [48]
that can be easily applied to bypass such buggy loose comparison
checks. Similarly, it is also much easier to bypass a U3 type loose
comparison check than a strict one using brute force.

In summary, the inconsistent loose comparisons can pose severe
security threats and need to be detected.

3.4 Research Challenges

We face several technical challenges. First, modern applications are
very complex and can have millions of lines of code. Loose compar-
ison bugs typically span many functions and are context-sensitive,
where they can only be triggered when the operands are within
several operand types and are in special values. Performing precise
program analysis in huge code bases is naturally challenging.

Second, it is difficult to identify loose comparison bugs with a
low false-positive rate. Loose comparison is a language feature and
can be exploited only in very special situations. An application
may use a massive number of loose comparison operations. Most of
the loose comparison operations are not bugs. Not reporting those
normal loose comparisons as bugs is challenging.

Last but not the least, the weakly-typed nature of PHP makes the
program analysis very challenging. We discuss it in more details in
§4.1.2 and §5.

4 DESIGN

We propose an approach to detecting loose comparison bugs in
PHP. To the best of our knowledge, it is the first program analysis
approach that detects loose comparison bugs in weakly-typed lan-
guages. The architecture of our approach is depicted in Figure 1. Our
approach consists of (1) a static analysis component, LChecker, to
identify loose comparison bugs (LCB), and (2) a dynamic analysis to
help validate the true positive bugs (LCB𝑡𝑝). Specifically, the static
analysis part, LChecker, uses taint analysis to identify untrusted
user data (Cond1), and tackles the challenge of determining the
types of variables in weakly-typed languages with a type inference
algorithm (Cond2). LChecker also integrates a context-sensitive

LChecker: Detecting Loose Comparison Bugs in PHP WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Dynamic
Validation

LCB!"

Type Inference
LCHECKER

LCB
Taint Analysis

Figure 1: The overall methodology.

function summary to perform an efficient inter-procedural anal-
ysis. To reduce the false reports, the dynamic analysis drives an
enhanced program execution engine to assist experts to validate
true positive bugs (Cond3).

4.1 Static Analysis

LChecker performs a source-code level static analysis based on the
control flow graphs (CFGs) and call graphs (CGs) of a program using
PHP-Parser [35]. We develop our own static analysis because there
is no available tool to fully translate PHP into a common interme-
diate representation for static program analysis due to the dynamic
nature of PHP. File inclusions might introduce new code into the
analysis scope when constructing the CFGs, thus LChecker uses a
fuzzy string match algorithm to identify and include possible files
into the current analysis context. This is a common design choice
in practice [37, 47]. If the entire inclusion file string is identified
literally, LChecker directly includes that file; otherwise, it consid-
ers its prefix or suffix and includes all satisfied file candidates. The
basic node in the CFGs is formulated in a format consisting of a
left operand (LeftOp), a right operand (RightOp), and an operator.
The operands can represent other nested expression nodes. For in-
stance, in the statement $x = $a + $b, the operator is assignment
(=), the LeftOp is $x, the RightOp is $a + $b, which represents the
expression of a plus operation.

4.1.1 Taint Analysis. LChecker performs a standard taint analy-
sis to find loose comparison statements that can be controlled by
attackers (Cond1).

LChecker sets as taint sources some untrusted data sources
that may expose the PHP program to potential risk. It includes
superglobals (e.g., $_GET, $_POST), user file uploads, databases,
etc., as taint sources. It also maintains a set of tainted variables for
identifying the taint status of variables during the analysis.

LChecker propagates taint from the RightOp to the LeftOp in
assignment-like statements. For example, in the statement $a = $b,
if $b is tainted, then $a becomes tainted and thus is put into the
tainted variable set. In branch statements, the analysis is first forked
and then joined after it. A variable after the branch node is marked
as tainted if it gets tainted in any branch. This is reasonable as there
actually exists at least one path for attackers to control the variable.

LChecker treats all loose comparison operations as sinks. Gen-
erally, if any tainted data reaches one of the operands, the loose
comparison operation is tainted. However, we observe that it is
not sufficient in practice, because the other untainted operand is
usually set with values that do not satisfy loose comparison bugs.
Therefore, LChecker reports only the loose comparisons of which
both operands are tainted.

4.1.2 Type Inference. LChecker uses a type inference algorithm
to check Cond2 and to narrow down the scope of potential bugs.

Different from some prior type inference works [2, 36], we need
to consider two new issues in our type analysis. First, in PHP and
other dynamically-typed languages (e.g., JavaScript), the values and
types of variables are determined only at run time. This is different
from some statically-typed languages (e.g., C/C++), whose variables
are declared with explicit types before use. Second, a PHP variable
is not bound to one type. PHP variables can be overwritten by
values in different types through the program execution. Therefore,
to perform type inference analysis, LChecker needs to monitor all
assignment statements to track variable type changes.

LChecker infers variable type information through data flow
analysis. In addition to the taint status, each variable is associated
with a type set, which denotes the possible types the variable can
be in. We define the following eight basic variable types in our
analysis: (1) Null, (2) Bool, (3) Int, (4) Float, (5) String, (6) Object,
(7) Array, (8) Mixed. Note that the Numeric type mentioned earlier
includes both the Int and the Float types. LChecker then identifies
the types of variables and operations with different strategies.

For scalars and constants, LChecker literally infer their types,
e.g., "1" is in the String type. For variables, LChecker directly
gets their types from their type sets. This is because, whenever
a variable is encountered, it must have been assigned with some
value and type before, or have been assigned with other variables.
By propagating the types with the data flow, LChecker is able to
infer the types of most variables.

Diverse operators are frequently used in PHP code. They deter-
mine the types of the operation results. For example, in the simple
assignment of $x = 1 . "string", the concatenation operator (‘.’)
concatenates an integer 1 and a string "string". The type of $x
would always be String because it is determined by the concatena-
tion operator (‘.’). Similarly, the types of results of all other binary
operations, unary operations, type casting operations, etc. can also
be inferred accordingly.

We find that built-in functions are usually well documented with
explicit specifications. LChecker can thus infer the types of pa-
rameters and return value whenever a built-in function is called.
However, the parameter types are not always accurate because built-
in functions in PHP generally allow users to violate the parameter
type specifications without raising runtime errors. For example, a
PHP built-in function, strlen(String):Int, can accept an integer
argument (e.g., strlen(1)).

Differently, for user-defined functions, LChecker directly ana-
lyzes the source code to infer types. LChecker uses a context-
sensitive function summary in the inter-procedural analysis to
infer return value types. The function summary describes the type
relationship between the parameters and the return value. Thus,
once the argument types are inferred, the return value type can
also be known. The details will be presented in our inter-procedural
analysis in §4.1.3.

The variable types are transferred from the RightOp to the LeftOp
in assignment-like statements. A conditional statement can lead
to multiple program execution paths and a variable can be as-
signed differently in different branches. Therefore, for each variable,
LChecker accumulates all possible types in all branches into its

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Penghui Li and Wei Meng

type set after the branches. This may introduce false positives be-
cause only one branch can be taken at run time and a variable can
only be in one type after that branch. However, it is still acceptable
because we observe that most variables are assigned with the same
type among different branches. We will further discuss this problem
in §6.2.4.

4.1.3 Context-Sensitive Inter-Procedural Analysis. We need to per-
form inter-procedural analysis because different call sites can in-
voke a user-defined function with different argument types and val-
ueswhich can later affect the states of the caller function. LChecker
follows the common practices in PHP program analysis to identify
the callees in dynamic method calls [6, 20]. Specifically, it searches
the method name in the whole program to find a unique match.
If several methods have the same method name, it further com-
pares the number of parameters in the method declarations and the
number of arguments in the call site.

It is expensive to analyze a function at every call site with explicit
arguments, thus LChecker uses a function summary to achieve an
efficient inter-procedural analysis for detecting loose comparison
bugs. The function summary maintains some necessary informa-
tion for each function, including function name, class name, etc.
Whenever a previous unanalyzed user-defined function is called,
LChecker constructs the function summary and then applies the
function summary to the call site. A function only needs to be
analyzed once, then the function summary can be used across the
whole analysis among all call sites. This significantly improves the
efficiency of inter-procedural analysis. However, there are twomain
problems we need to tackle for detecting loose comparison bugs.

First, PHP does not require developers to include parameter
types in function definitions. The parameter types indeed affect the
variable types inside the functions, which ultimately influences our
type inference and loose comparison bug detection. Furthermore,
different call sites can provide different arguments to invoke the
functions. In the example of Listing 2, the original parameter of
function f() is directly returned. Line 2 and 3 call f() with an argu-
ment in Array type and String type, respectively. Consequently, $a
and $b are expected to be in Array type and String type. Therefore,
the function summary should be context-sensitive to model return
value types.

Second, loose comparison bugs are context-sensitive. We also
need to consider the calling context of a callee in our detection. In
Listing 2, when constructing the function summary for f() alone,
the loose comparison bug at line 7 is not detected. However, this
loose comparison statement can be exploited in some calling con-
texts. With the inputs like the one in line 3, the loose comparison
bug can be exploited because the local variable $x becomes a tainted
string. Therefore, the function summary should be context-sensitive
so that the bugs in the callee can be detected.

The function summary in LChecker is context-sensitive to sup-
port different calling contexts of a function. To achieve this, we add
a type placeholder for the parameters (𝑃𝑎𝑟𝑎𝑚𝑖𝑑𝑥) in the step of type
inference, where idx denotes the corresponding index of a parame-
ter. 𝑃𝑎𝑟𝑎𝑚𝑖𝑑𝑥 is propagated in the same way as other types during
the type inference. Further, LChecker hooks all return expressions
and records the Returntypes for function return values. In the ex-
ample of Listing 2, $x in line 7 obtains the type 𝑃𝑎𝑟𝑎𝑚1 instead of

1 <?php
2 $a = f(array(1, 2)); // pass a constant array
3 $b = f((string)$_GET['test']); // pass a user string
4

5 function f($x) {
6 $passwordDB = "0e12345678";

7 if($x == $passwordDB) {
8 /* login succeeds */

9 }

10 return $x; // return parameter $x
11 }

Listing 2: An example of calling a user-defined function in different

contexts.

an explicit type (e.g., Array or String). At line 10, LChecker adds
𝑃𝑎𝑟𝑎𝑚1 to Returntypes of the function summary of f(). At the call
sites in line 2 and 3, LChecker replaces the type placeholders with
explicit argument types to obtain the return value types. Thus $a
and $b are inferred as of Array and String types, respectively.

To successfully detect such loose comparison bugs at the call site
of f() at line 3, LChecker records the data sources (e.g., parameters
and superglobals) of each variable during the data flow analysis
of summary construction. It then includes all loose comparisons
(sinks) together with the types, values, taint status, data sources of
the operands in the function summary. In the example, LChecker
includes line 7 ($x == $passwordDB) into its summary. The data
source of the LeftOp ($x) is the first parameter; its type is 𝑃𝑎𝑟𝑎𝑚1;
and it is not tainted. The data source of the RightOp ($passwordDB) is
database; its type is String; and it is tainted. So at the call site of line
3, LChecker applies the taint and type status of the arguments to
the loose comparison in the summary. Line 7 thus can be identified
as a loose comparison bug. Moreover, to handle the nested user-
defined function calls, LChecker recursively adds all callees’ loose
comparisons (sinks) into the caller’s function summary.

4.1.4 Detecting Authentication Related Bugs. LChecker specially
handles authentication related bugs due to their commonness and
severe security impacts. We observe that the authentication process
usually compares a user-provided password with a password stored
in the application back end, e.g., database [17]. The passwords are
most likely to be hashed before the comparisons to avoid accidental
disclosure in a data breach. Therefore, LChecker tags database
access and hash computation as additional information during the
data flow analysis.

LChecker reports authentication related bugs when an operand
of a loose comparison has both the database access and the hash
computation tags set. Besides, LChecker disregards some hash
functions because they cannot cause inconsistent loose comparison
results. For example, the PHP built-in function password_hash()
does not generate the magic strings defined in §3.3.

LChecker hooks the built-in functions that handle database
queries and those computing hash values in the analysis. Once
these operations are encountered, the corresponding tags are set
to True. Besides, since some applications maintain passwords in
some back-end files or directly hard-code them in the source code,
we propose a keyword matching strategy to assist the detection of
authentication related bugs. In detail, we collect a set of frequently-
used identifiers for passwords, e.g., $passwd. The variables that use
these identifiers are tagged with database access. After that, we

LChecker: Detecting Loose Comparison Bugs in PHP WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

follow the similar rules to propagate these tags from their sources
to other variables.

4.2 Dynamic Analysis

The static data flow analysis can detect many potential loose com-
parison bugs, of which some can be false positives. In addition, our
static type inference cannot be 100% accurate because we consider
multiple different execution paths at a time. Therefore, we further
use a dynamic analysis for validating the loose comparison bugs in
a semi-automated manner.

We enhance the PHP interpreter and hook loose comparison
operations to validate the loose comparison cases that are statically
detected. At run time, we can precisely obtain the types and val-
ues of the comparison operands. The enhanced PHP interpreter
additionally operates a shadow strict type comparison between the
operands of the loose comparisons to check if the two comparisons
produce different comparison results. It also further checks whether
they fall into the three inconsistent comparison cases (U1-U3), i.e.,
if an operand is a magic string and is implicitly converted into
a different value. Security warnings are generated at run time to
notify the true positive bugs to an analyst.

Since our static analysis has already pinpointed a very limited
number of potentially vulnerable paths for each identified suspi-
cious case. Thus we can leverage very limited human efforts (see
§6.2) to construct inputs to assist the enhanced program execution
engine.

5 IMPLEMENTATION

We implemented our method with around 3K lines of PHP code
and 600 lines of C code. We will release the source code of our pro-
totype implementation. We used PHP-Parser to parse PHP source
code into abstract syntax trees (ASTs) and then construct CFGs
and CGs. The taint analysis and type inference were performed by
walking through the CFGs and CGs. We also manually identified
some password and database related built-in functions for the key-
word matching strategy. We implemented the dynamic analysis in
the PHP interpreter. We did not modify the generation step of PHP
ASTs and opcodes in the PHP Zend virtual machine. Instead, we
inserted code in comparison handlers to perform additional strict
comparisons and warning generation. We discuss next some im-
portant implementation issues we encountered and our solutions.
Arrays. Arrays are usually accessed with keys (e.g., $a[$key]).
However, sometimes the concrete values of the keys cannot be
inferred statically due to the existence of conditional statements
(e.g., if, loops), built-in functions, etc.Our data-flow analysis chooses
to only model the array items with concrete key values that can
be statically inferred. For the other array items, we apply the taint
status of the array to them and designate their types to Mixed. We
mark an array as tainted if at least one item in it is tainted. This is
a commonly used method to model arrays [21].
Loops. To avoid path explosion, we treat loop statements
(e.g., for, while and foreach) as if statements and unroll them
only once, following the common practice [57]. To achieve this,
we remove the back edge pointing from the loop body to the
loop header in the CFG construction process. In the case of

foreach($array as $key=>$value) loops, a $value and a $key (op-
tional) are created to help iterate over the array items. They are
applied to the scope of the loop bodies only. Due to the same chal-
lenge of array analysis above, we choose to simplify it by assigning
the taint status of the array and a type of Mixed to $value and $key.
This allows us to analyze the part of the code inside the loop bodies.
Analysis entries. We implemented LChecker to start the analy-
sis from the main functions in the default application deployment
settings. Some user-defined functions are not ever analyzed because
they cannot be invoked either directly or indirectly from the main
functions. However, these unanalyzed functions themselves might
directly interact with untrusted data sources by retrieving values
from superglobals, files, etc. Thus they can also lead to loose com-
parison bugs. It is possible that LChecker might miss some loose
comparison bugs in the current implementation. Nevertheless, we
believe the implementation choice is reasonable because there is
no execution path leading to those bugs.

6 EVALUATION

In this section, we evaluate the effectiveness of LChecker in de-
tecting loose comparison bugs. We apply LChecker to detect loose
comparison bugs in several popular PHP applications (§6.2) and
compare it with the related work (§6.3). We then analyze its perfor-
mance (§6.4) and discuss a few interesting bugs LChecker detects
(§6.5).

6.1 Experimental Setup

We select 26 popular PHP applications. They are listed in the first
column of Table 3. In total, they contain 38.7K PHP source files
and 7M LoC and have 49.8K strict comparisons and 49.3K loose
comparisons. The evaluation dataset is constructed by selecting (1)
applications in the dataset used in a closely related work—Nemesis
[17]; (2) popular and large PHP applications such as WordPress,
MediaWiki, and HotCRP; and (3) several well-known and highly-
rated PHP projects on GitHub. We try to include all applications
with known loose comparison bugs in CVE database as the ground
truth in our evaluation (the last seven applications in Table 3). How-
ever, some applications cannot be included because their complete
source code is not publicly available (e.g., CVE-2020-10568 [12])
or we are unable to locate the bugs given the limited information
in the CVE (e.g., CVE-2019-10231 [11]). We download the source
code of each application from its official website or GitHub, and
configure it with the default settings in our experiments.

We also compare with PHP Joern, which is the only relevant
tool that attempts to detect loose comparison bugs [6]. For a fair
comparison, we try to use the same settings as in their paper. We
first construct the code property graphs [58] for each application.
We then apply the same taint propagation rules mentioned in §4.1.1
and traverse the graphs to detect magic hash bugs.

All experiments were conducted on a computer running Debian
GNU/Linux 9.12, with a 4-core Intel Xeon CPU and 16GB RAM.

6.2 Bug Detection

The evaluation results are shown in Table 3. We use the super-
script 𝐿 in the column headers to denote the results of LChecker,
and subscripts 𝑡𝑎𝑖𝑛𝑡 , 𝑡𝑦𝑝𝑒 , and 𝑡𝑝 for the results of running only

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Penghui Li and Wei Meng

Table 3: Evaluation results of bug detection. SC, LC, and LCB mean strict comparisons, loose comparisons, and loose comparison bugs,

respectively. The superscripts 𝐿 and 𝐽 denote the results of LChecker and PHP Joern. The subscripts 𝑡𝑎𝑖𝑛𝑡 , 𝑡𝑦𝑝𝑒 , and 𝑡𝑝 denote the results of

taint analysis, type inference, and true positives. Auth and CV denote authentication bypass vulnerabilities and correctness violation bugs.

App Files LoC SC LC LCB𝐿
𝑡𝑎𝑖𝑛𝑡

LCB𝐿𝑡𝑦𝑝𝑒 LCB𝐿𝑡𝑝 Auth𝐿𝑡𝑝 CV𝐿
𝑡𝑝 Time𝐿 LCB𝐽

𝑡𝑎𝑖𝑛𝑡
LCB𝐽

𝑡𝑝 Time𝐽

WordPress (5.4.1)‡ 1,474 862,308 5,025 3,439 42 18 0 0 0 10 m 35 0 11 m
MediaWiki (1.3.41)‡ 4,289 1,101,308 9,992 3,661 18 0 0 0 0 12 m 21 0 11 m
phpStat (1.5)† 16 2,138 0 112 52 15 4 0 4 1 m 38 0 1 m
Codiad (2.8.4)† 57 10,798 94 241 39 10 6 1 5 2 m 28 1 1 m
Monstra (3.0.4)† 509 422,355 241 500 8 1 0 1 0 3 m 12 1 1 m
PHP-ML (2.0)‡ 148 12,895 182 84 19 2 2 0 2 1 m 11 0 2 m
Z-BlogPHP (1.6.0)† 250 46,443 290 1,247 39 6 3 1 2 2 m 11 0 1 m
HotCRP (2.102)‡ 224 76,598 4,119 1,907 39 0 0 0 0 2 m 23 0 1 m
FAQforge (1.3.2)† 108 2,984 0 32 17 2 1 1 0 1 m 9 1 1 m
geccbblite (0.1)† 11 327 0 6 4 4 4 0 4 1 m 4 4 1 m
phpMyAdmin (5.0.2)‡ 4,289 324,353 4,399 3,542 19 4 0 0 0 2 m 45 0 2 m
PHPiCalendar (2.4)† 83 21,466 64 627 49 5 1 1 0 2 m 33 0 1 m
SCARF† 20 1,687 5 44 19 0 0 0 0 1 m 17 0 1 m
PHPFastNews (0.3)† 22 4,288 18 75 15 2 2 0 2 1 m 11 0 1 m
Drupal (8.7.0)‡ 11,644 1,652,690 7,171 3,846 49 0 0 0 0 5 m 63 0 4 m
phpBB (3.3)† 2,964 502,182 6,009 3,536 29 5 0 0 0 6 m 12 0 8 m
MyBB (3.3.0)† 416 174,796 364 6,464 52 10 0 0 0 3 m 21 0 1 m
WeBid (1.2.1)† 416 150,640 141 1,775 63 15 7 0 7 4 m 44 2 3 m
osCommerce (2.3.4)‡ 807 93,835 133 2,764 64 14 7 0 7 2 m 72 0 1 m
PHPList (3.5.0)† 7,770 853,603 9,080 2,010 77 24 5 3 2 5 m 63 2 1 m
UseBB (1.0.12)† 80 22,509 66 337 69 12 1 1 0 1 m 59 0 3 m
YOURLS (1.7.3)† 479 46,364 500 263 41 5 1 1 0 2 m 17 1 1 m
Centreon (2.8.26) † 1,793 376,522 824 5,489 15 7 2 1 1 1 m 12 1 1 m
Trovebox (4.0.0-rc5) † 477 82,594 708 673 23 1 1 1 0 1 m 19 0 1 m
PHPLiteAdmin (1.9.6)‡ 24 10,110 88 387 46 18 1 1 0 1 m 31 0 1 m
MyBB (1.8.6) † 376 167,722 304 6,291 51 5 1 1 0 3 m 48 0 3 m

Total 38,746 7,023,515 49,817 49,352 958 185 50 14 36 75 m 759 13 64 m
‡ denotes relatively more popular applications. † denotes relatively less popular applications.

taint analysis, running type inference, and the final true positives.
The taint analysis of LChecker checks Cond1 to filter those nor-
mal loose comparisons out. Among a total of 49.3K loose compar-
isons (LC) in the 26 PHP applications, LChecker identified 958
(1.92%) tainted loose comparisons (LCB𝐿

𝑡𝑎𝑖𝑛𝑡
) in all applications,

while 48,363 (98.08%) loose comparisons did not meet our definition
thus were directly excluded. This indicates that our taint analysis
can very effectively narrow down the scope of buggy loose compar-
ison cases.

After applying the type inference to check Cond2, LChecker
removed 773 (80.69%) loose comparisons identified in the taint
analysis and reported only 185 cases (LCB𝐿𝑡𝑦𝑝𝑒) in 17 out of 26
applications.We then analyzed the reported bugs with the enhanced
PHP interpreter and confirmed 50 loose comparison bugs (LCB𝐿𝑡𝑝).
42 bugs are previously unknown. To validate all the 185 reported
cases, it took one author, a total of 12 hours with the help of the
enhanced PHP interpreter. The manual effort was mainly spent
on checking whether Cond3 can hold or not. In most cases, the
potentially vulnerable paths were reported already in the taint
analysis and the type inference analysis, so the manual analysis
was straightforward. We responsibly reported the newly detected
bugs to the relevant developers. As of Feburary 17, 2021, 10 bugs,
including 9 CVEs1, have been promptly acknowledged or patched

1CVE-2020-23352, CVE-2020-23353, CVE-2020-23355, CVE-2020-23356, CVE-2020-
23357, CVE-2020-23358, CVE-2020-23359, CVE-2020-23360, CVE-2020-23361.

Table 4: Types of loose comparison bugs.

Type U1 U2 U3 U1+U2 U1+U3 U2+U3 U1+U2+U3 Total

Bugs 6 0 0 41 0 0 3 50

6.2.1 Effect of Keyword Match Strategy. As mentioned in §4.1.4,
we collect some frequently-used identifiers to assist the detection
of authentication related bugs. We find that 230 out of the 958 cases
reported in taint analysis were identified with the help of these
identifiers. Further, 44 out of 185 cases reported in type inference
and 13 out of 50 real loose comparison bugs were identified with
such identifiers. This indicates that the keyword match strategy
can help improve the effectiveness of bug detection.

6.2.2 Characterization of Bugs. We further investigate and charac-
terize these real bugs in this section.
Categorization. We manually investigated the characteristics of
the bugs and classified them into two categories: (1) authentication
bypass vulnerabilities, allowing attackers to bypass authentica-
tion without valid credentials; and (2) correctness violation bugs,
breaking the application functionality or correctness and leading to
abnormal program behaviors. There are 14 authentication bypass
vulnerabilities and 36 correctness violation bugs, respectively. The
results are shown in columns Auth𝐿𝑡𝑝 and CV𝐿𝑡𝑝 in Table 3.

We also classify the bugs based on the type of inconsistent loose
comparisons they can cause, as shown in Table 4. Most buggy

LChecker: Detecting Loose Comparison Bugs in PHP WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

programs perform direct plain text (String) loose comparisons,
thus can be exploited by both scientific notations strings (U1) and
numeric strings (U2). In six bugs, the programs process the operands
with hash functions, which can only produce scientific notation
strings (U1). Only three bugs involve both same-type (String) and
cross-type (String and Numeric) loose comparisons and belong to
all the three types of bugs (U1 + U2 + U3).
Popularity of buggy apps. LChecker detected loose compari-
son bugs in a diverse set of applications. It found bugs in content
management system applications, such as Codiad (2.8.4) [9] and
Monstra (3.0.4) [32]. It also found bugs in several popular and well-
maintained applications. For example, LChecker detected seven
bugs in osCommerce (2.3.4) [38], a popular e-commerce software
used by over 200K websites; two bugs in PHP-ML (2.0) [41], a pop-
ular PHP machine learning library with over 6K stars on GitHub.

We investigate the relationship between loose comparison bugs
and the popularity of buggy applications. We classify the applica-
tions in our dataset into relativelymore or less popular applications,
and mark them in the first column of Table 3 with superscripts ‡
and †, respectively. Specifically, apps having over 0.1% market share
[52], having over 2K stars or forks on GitHub, or used by over 100K
websites are classified as relatively more popular ones. Others are
relatively less popular.

As shown in the first column of Table 3, 40 bugs were found
in 14 out of the 18 relatively less popular applications (with 3.0M
LoC). The rest 10 bugs were found in only three out of the eight
relatively more popular applications (with 4.0M LoC). We did not
detect any bug in those apps with a huge number of lines of code
(e.g., WordPress, MediaWiki, and Drupal). This suggests that the size
of the application may not be directly related to loose comparison
bugs. However, the relatively less popular applications are more
likely to have loose comparison bugs, probably because they are
less well maintained.

6.2.3 False Negatives. The evaluation result on applications with
known bugs demonstrates that LChecker has no false negative in
this ground truth dataset. The last seven applications in Table 3 have
eight previously known loose comparison bugs, including seven
CVEs. LChecker identified all eight known bugs. Interestingly,
LChecker also detected two new bugs in the old version of PHPList
(3.5.0). They remained in the latest version until we reported to the
developers. More details are presented in §6.5.1.

However, LCheckermight still miss potential loose comparison
bugs and lead to false negatives. First, LChecker has limitations
in call target inference because it builds an incomplete call graph
as other works [3, 6]. Therefore, some actual reachable functions
might not be analyzed. Second, the loops are unrolled only once,
thus many paths are not studied. Some bugs might be exposed only
after several iterations. Other imprecise modeling mentioned in §5
can also result in false negatives.

6.2.4 False Positives. LChecker employs a static analysis and con-
sequently has false positives. As presented in Table 3, many stat-
ically detected loose comparison bugs were not validated as real
bugs. Especially, in 185 reported cases, only 50 were confirmed
as real loose comparison bugs, and 135 were false positives. We
discuss the main causes of false positives as follows.

𝐿𝐶𝐵!"#$!% 𝐿𝐶𝐵!&'(% 𝐿𝐶𝐵!"#$!
)

B (37)

𝐿𝐶𝐵!'%

A (13)

D (107) C (28)

E (702)

F (71) G (16)

Loose Comparisons
(49,312)

𝐿𝐶𝐵!'
)

Figure 2: Result distribution of LChecker and PHP Joern. Alphabets

(A - G) and the numbers in parenthesis denote different situations

and the corresponding number of cases in them.

Custom sanitizers. Developers can write their custom functions
to sanitize untrusted user data. Some tainted loose comparison
cases are actually sanitized with these custom sanitizers and are
reported as false positives. However, it is difficult to automatically
identify all these sanitizers. Around 10% of false positives fall under
this category.
Partial dependency. Loose comparison may be used as only part
of the entire logical formula in a conditional statement. Therefore,
the execution flow does not depend on only loose comparisons.
Even though a loose comparison operation alone can be bypassed
through U1-U3, the overall condition might still remain the same
and lead to the same program execution path. This introduces
around 20% of false positives.
Unreachable code. Many statically detected loose comparison
bugs are not practically reachable. This is because the global path
constraints for reaching them cannot be satisfied. Our manual in-
vestigation reveals that around 30% of false positives are caused by
this reason. To address it, we propose to use symbolic execution
together with constraint solving in our future work.
Uses of safe functions. Many false-positive loose comparison
bugs do not produce inconsistent comparison results, because the
operands are produced by some safe built-in or user-defined func-
tion. For example, some password encryption function always gen-
erates outputs that do not lead to inconsistent comparison results.
Around 20% of false positives fall under this category.
Others. The remaining 20% of false positives are caused by other
issues, such as inaccurate modeling of arrays, inaccurate type infer-
ence in the branch statements, and dynamic function calls. Although
they are orthogonal challenges of static analysis, mechanisms like
[19, 22] can be used to improve the analysis accuracy of LChecker.

6.3 Comparison with Related Work

In Table 3, the detection results of PHP Joern are shown in the
columns labeled with the superscript 𝐽 . Since PHP Joern does not
support type inference, we list the results of running only taint
analysis (LCB𝐽

𝑡𝑎𝑖𝑛𝑡
) and the true positive cases (LCB𝐽

𝑡𝑝). Overall,
it reported 759 cases, of which 13 (1.71%) bugs in eight out of
26 applications were confirmed as true bugs. We investigate and

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Penghui Li and Wei Meng

1 <?php
2 function validateLogin($login, $password) {
3 /* retrieve admin data from database */

4 $admindata = Sql_Fetch_Assoc($req);

5 $passwordDB = $admindata['password'];

6 $encryptedPass = hash('md5', $password);

7

8 /* password validation */

9 if (!empty($passwordDB) && $encryptedPass ==
$passwordDB) {

10 /* successfully authenticate */

11 return array($admindata['id'], 'OK');
12 }

13 }

Listing 3: An authentication bypass vulnerability in PHPList (3.5.0).

demonstrate the detection results of LChecker and PHP Joern in
each step in Figure 2.

LChecker outperformed PHP Joern with more confirmed bugs
and much fewer false reports. LChecker successfully detected
all real loose comparison bugs that PHP Joern detected, and 37
more real bugs that PHP Joern failed to detect. In taint analysis,
LChecker and PHP Joern reported 985 and 759 loose comparison
cases, respectively, among 26 applications. There are 743 cases (A,
C, and E) that were found by both tools, and only 13 cases (A)
of them were confirmed as real bugs. Since PHP Joern targets at
only magic hash problem (U3), 215 more cases (B, D, and F) were
reported by LChecker but not by PHP Joern. Consequently, 37
loose comparison bugs (B) were thus identified by only LChecker.
With LChecker’s type inference, it lowered the number of possible
cases to 185—of which 50 (27.03%) were true positives, significantly
limiting the cases that need to be semi-manually validated by a
human analyst. In contrast, an analyst using PHP Joern would have
to examine all 759 potential cases, of which only 13 (1.73%) were
true positives.

We notice that 16 cases (G) were reported by PHP Joern but
not by LChecker. Our further study finds that they were missed
because of LChecker’s imprecise modeling of arrays (§5).

6.4 Performance

LChecker’s static analysis is both efficient and scalable. It stati-
cally analyzed 7M LoC in 26 PHP applications within 75 minutes,
comparable to PHP Joern which finished the analysis within 64
minutes. The analysis time for each application is shown in col-
umn Time𝐿 (LChecker) and column Time𝐽 (PHP Joern) of Table 3.
Most applications were analyzed by LChecker within one minute
because it employs a context-sensitive inter-procedural analysis. It
spent only 12 minutes on analyzing MediaWiki (1.3.41) [30], which
has over one million lines of code. This shows that LChecker is
able to efficiently analyze complex modern applications.

6.5 Case Studies

We now discuss some interesting bugs that LChecker detected.

6.5.1 Authentication Bypass Vulnerabilities in PHPList. One au-
thentication bypass vulnerability LChecker identified in PHPList
(3.5.0) [43] is shown at line 9 in Listing 3. The arguments $login
and $password of the validateLogin() function are provided by a
remote user who tries to login as the administrator. The function

1 <?php
2 /* prepare classifier and data samples */

3 $classifier = new DecisionStump();
4 $samples = [[1], [2], [5], [6]];

5 /* normal prediction */

6 $labels = ['label2', 'label2', 'label1', 'label1'];

7 $classifier ->train($samples , $labels);

8 echo $classifier ->predict([5.5]); // predict label1
9 /* wrong prediction */

10 $labels = ['0e2', '0e2', '0e1', '0e1'];

11 $classifier ->train($samples , $labels);

12 echo $classifier ->predict([5.5]); // predict '0e2'

13

14 function calculateErrorRate($targets , $threshold ,
$values) {

15 $wrong = 0.0;

16 foreach ($values as $index => $value) {
17 /* predict a label */

18 $predicted = predict($value, $threshold);

19 /* compare labels */

20 if ((string) $predicted != (string) $targets[
$index]) {

21 /* for error rate calculation */

22 $wrong += $this->weights[$index];

23 }

24 }

25 }

Listing 4: A correctness violation bug in the decision stump

algorithm of PHP-ML (2.0).

retrieves the previously hashed password of the administrator ac-
count from the database into $passwordDB. Line 6 “encrypts” the
user-provided password ($password) by computing its hash value
with the md5() function. The two passwords are loosely compared
at line 9.

This loose comparison is vulnerable because the two operands
can be two different scientific notation strings that cause
($encryptedPass == $passwordDB) to be True. So the user can by-
pass the password validation and escalate the privileges to behave
as the administrator even without the correct credential. Besides,
after bypassing the authentication, the attacker can launch other at-
tacks such as code injection, SQL injection, etc., by using privileged
APIs intended for only the administrator.

LChecker also identified two other authentication bypass vul-
nerabilities and two correctness violation bugs in PHPList (3.5.0),
including a known authentication bypass vulnerability (CVE-2020-
8547 [14]). An interesting fact is that, this CVE was reported and
fixed in version 3.5.1, however, the other two authentication bypass
vulnerabilities still remained five months until we detected and
reported them to the developers that fixed them in version 3.5.4.
This suggests that the developers might not well understand loose
comparison bugs and their security impacts.

6.5.2 Correctness Violation Bugs in PHP-ML. PHP-ML (2.0) [41]
is a popular PHP machine learning library. It provides plenty of
algorithms for classification, clustering, etc. Users can directly use
the provided algorithms to train their models for classification.
LChecker detected two correctness violation bugs in the linear
classifiers of PHP-ML (2.0) that can lead to wrong predictions.

The one in the decision stump algorithm is shown in Listing 4.
The array of samples ($samples) at line 4 maps to the arrays of
labels ($labels) at line 6 and 10. Given the training data, the input

LChecker: Detecting Loose Comparison Bugs in PHP WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

[5.5] is apparently more relevant to the second category. So the
normal $classifier predicts input [5.5] to the second category
of label1 (line 6-8). However, if the labels are named as line 10
with magic zero strings, the classifier wrongly predicts the same
input data into the first category 0e2.

This is caused by a loose comparison bug found in the training
code of the classifier. For such binary classification cases, function
calculateErrorRate() is called iteratively to calculate the error
rates on multiple training thresholds. The threshold with a min-
imum error rate is then used for the prediction of this model. In
function calculateErrorRate(), it first predicts a label based on
each sample value in $samples and the threshold (line 18). Then it
compares the predicted label with the real label specified by the
training data in $targets (line 20). However, the loose comparison
at line 20 always has a False value because both "0e2" and "0e1"
are evaluated as 0. Thus the first label is always predicted.

If such labels are used as training data, the trained model cannot
generate correct predictions. This places a severe threat to the other
components that use such a model. For example, if the model is
used in critical scenarios like authentication, the whole system can
malfunction. LChecker also detected another similar correctness
violation bug in the perceptron classifier of PHP-ML (2.0).

7 DISCUSSION AND FUTUREWORK

Validating loose comparison bugs. We enhanced the PHP in-
terpreter to assist humans to validate loose comparison bugs. The
difficulty of our semi-manual validation is greatly decreased be-
cause some potentially vulnerable paths have been pinpointed by
the static analysis. Our evaluation results also demonstrated that the
manual efforts spent in validating the bugs were acceptable. How-
ever, techniques like symbolic execution [3] and directed fuzzing
[7, 54] might be applied to further automate such processes. In
the future, we plan to leverage symbolic execution to collect path
constraints for reaching the bugs and query constraint solvers for
possible solutions that can be used in the dynamic bug validation
process.
Patching loose comparison bugs. Some loose comparison bugs
can be patched locally, i.e., by simply changing the comparison
operations [33]. Converting the loose comparisons to strict ones to
eliminate implicit type conversion and enforce operand types can
avoid some of the bugs. Fixing some other loose comparison bugs
may require changes in the overall logic. For example, a program
might be designed to allow the comparison operands to be in mul-
tiple types for different paths. Thus directly converting its loose
comparisons to strict ones might break the intended functionalities
in some types or paths. Therefore, this might require developers to
patch each case differently.
Portability. Besides equal and unequal operators, implicit operand
type conversion can also happen in other loose comparison opera-
tors such as the greater than operator (>). These loose comparison
operators are also subject to the similar loose comparison bugs.
We currently only implement our method to detect buggy loose
comparisons using the equal and unequal operators. The proposed
definition and approach, however, can be ported to other loose
comparison operators without loss of generality. We leave it as our
future work.

8 RELATEDWORK

Type system bugs. Recent research has covered some type system
bugs other than loose comparison bugs. 𝜇PHP [4] formally defines
type juggling and implicit type conversion in PHP, but it does not
target at detecting bugs caused by such language features. Phantm
[25] and PHPLint [42] use static flow-sensitive analysis to identify
variable type mismatch errors in PHP. Some prior works detect
type system bugs in other programming languages. TypeDevil [44]
identifies the type inconsistency bugs in JavaScript with a runtime
type analysis. Johnson et al. detect user/kernel pointer bugs in Linux
kernel with a type qualifier inference method [23]. CAVER [27]
identifies bad type casting bugs in C/C++ at run time. We study a
novel class of bugs in the type system of PHP.
PHPapplication bug detection. Many relatedworks have tried to
detect logic vulnerabilities, including authentication bypass vulner-
abilities and access control vulnerabilities. Dahse and Holz precisely
model PHP built-in functions and statically detect bugs with taint
analysis [15]. Additionally, they detect second-order vulnerabilities
that are exploited with the second-order attack inputs [16]. Sun
et al. compare sitemaps of different user roles to find privileged
pages and detect access control vulnerabilities via forced browsing
[49]. Nemesis [17] leverages dynamic information flow tracking
to prevent authentication and access control vulnerabilities with
developer specified access control rules. However, it does not inves-
tigate loose comparison bugs. Many other works use taint analysis
[24, 29, 47, 50] and symbolic execution [1, 5, 47, 50] to find logic
vulnerabilities in web applications. However, these works focus on
application-layer logic vulnerabilities. Instead, LChecker targets
the logic vulnerabilities caused by the language feature misuse in
PHP.

PHP Joern [6] is the only work that discussed identifying magic
hash bugs. We extend the research scope to loose comparison bugs
and develop a type inference algorithm to reduce the false-positive
rate.

9 CONCLUSION

Loose comparison bugs can bring severe security threats, such as
privilege escalation and functionality breaking. In this paper, we
conduct the first systematic study of loose comparison bugs in PHP.
We study several known vulnerabilities, formally define loose com-
parison bugs and present their security impacts. We then develop
LChecker, a static-analysis tool that detects loose comparison bugs.
It employs a context-sensitive inter-procedural data-flow analysis
and a type inference algorithm to identify the bugs. LChecker
found 42 new loose comparison bugs, including 9 new CVEs, which
demonstrates its efficacy in bug detection.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
helpful suggestions and comments. The work described in this
paper was substantially supported by a grant from the Research
Grants Council of the Hong Kong Special Administrative Region,
China (Project No. CUHK 14210219).

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Penghui Li and Wei Meng

REFERENCES

[1] Giovanni Agosta, Alessandro Barenghi, Antonio Parata, and Gerardo Pelosi. 2012.
Automated security analysis of dynamic web applications through symbolic code
execution. In 2012 Ninth International Conference on Information Technology-New
Generations.

[2] Alexander Aiken and Edward L Wimmers. 1993. Type inclusion constraints
and type inference. In Proceedings of the Conference on Functional programming
languages and computer architecture.

[3] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. 2018.
NAVEX: Precise and Scalable Exploit Generation for Dynamic Web Applications.
In Proceedings of the 27th USENIX Security Symposium (Security). Baltimore, MD,
USA.

[4] Vincenzo Arceri and Sergio Maffeis. 2017. Abstract domains for type juggling.
Electronic Notes in Theoretical Computer Science (2017).

[5] Shay Artzi, AdamKiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and
Michael D Ernst. 2008. Finding bugs in dynamic web applications. In Proceedings
of the 17th International Symposium on Software Testing and Analysis (ISSTA).
Seattle, WA, USA.

[6] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yamaguchi.
2017. Efficient and flexible discovery of php application vulnerabilities. In Pro-
ceedings of the 2nd IEEE European Symposium on Security and Privacy (EuroS&P).
Paris, France.

[7] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS). Dallas, TX, USA.

[8] Michiel Buddingh. 2011. The distribution of hash function outputs. https:
//michiel.buddingh.eu/distribution-of-hash-values.

[9] Codiad. 2020. Codiad Web IDE. http://codiad.com.
[10] The MITRE Corporation. 2020. CVE-2017-1001000. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2017-1001000.
[11] The MITRE Corporation. 2020. CVE-2019-10231. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2019-10231.
[12] The MITRE Corporation. 2020. CVE-2020-10568. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2020-10568.
[13] The MITRE Corporation. 2020. CVE-2020-8088. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2020-8088.
[14] The MITRE Corporation. 2020. CVE-2020-8547. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2020-8547.
[15] Johannes Dahse and Thorsten Holz. 2014. Simulation of Built-in PHP Features

for Precise Static Code Analysis.. In Proceedings of the 2014 Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA, USA.

[16] Johannes Dahse and Thorsten Holz. 2014. Static detection of second-order
vulnerabilities in web applications. In Proceedings of the 23rd USENIX Security
Symposium (Security). San Diego, CA, USA.

[17] Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. 2009. Nemesis: Pre-
venting Authentication & Access Control Vulnerabilities in Web Applications. In
Proceedings of the 18th USENIX Security Symposium (Security). Montréal, Canada.

[18] Ivan Bjerre Damgård. 1989. A design principle for hash functions. In Conference
on the Theory and Application of Cryptology.

[19] Stephen Fink, Kathleen Knobe, and Vivek Sarkar. 2000. Unified analysis of array
and object references in strongly typed languages. In International Static Analysis
Symposium.

[20] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychron-
akis. 2020. Temporal system call specialization for attack surface reduction. In
Proceedings of the 29th USENIX Security Symposium (Security). Virtual Event.

[21] Denis Gopan, Thomas Reps, and Mooly Sagiv. 2005. A framework for numeric
analysis of array operations. In Proceedings of the 32nd ACM Symposium on
Principles of Programming Languages (POPL). Long Beach, CA, USA.

[22] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997. Call graph
construction in object-oriented languages. In Proceedings of the 12th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). Atlanta, GA, USA.

[23] Rob Johnson and David Wagner. 2004. Finding User/Kernel Pointer Bugs with
Type Inference.. In Proceedings of the 13th USENIX Security Symposium (Security).
San Diego, CA, USA.

[24] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A static
analysis tool for detecting web application vulnerabilities. In Proceedings of the
27th IEEE Symposium on Security and Privacy (Oakland). Oakland, CA, USA.

[25] Etienne Kneuss, Philippe Suter, and Viktor Kuncak. 2010. Phantm: PHP analyzer
for type mismatch. In Proceedings of the 18th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE). Santa Fe, NM, USA.

[26] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. 2018.
Crysl: An extensible approach to validating the correct usage of cryptographic
apis. In 32nd European Conference on Object-Oriented Programming (ECOOP 2018).

[27] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. 2015. Type
casting verification: Stopping an emerging attack vector. In Proceedings of the

24th USENIX Security Symposium (Security). Washington, DC, USA.
[28] Vickie Li. 2019. PHP Type Juggling Vulnerabilities. https://medium.com/swlh/

php-type-juggling-vulnerabilities-3e28c4ed5c09.
[29] Ibéria Medeiros, Nuno Neves, and Miguel Correia. 2015. Detecting and remov-

ing web application vulnerabilities with static analysis and data mining. IEEE
Transactions on Reliability (2015).

[30] MediaWiki. 2020. MediaWiki. https://www.mediawiki.org/wiki/MediaWiki.
[31] Sipke Mellema. 2016. SPOT THE BUG CHALLENGE 2016 WRITE-

UP. https://www.securify.nl/blog/SFY20170103/spot-the-bug-challenge-2016-
write-up.html.

[32] Monstra. 2020. Github of Monstra. https://github.com/monstra-cms/monstra.
[33] Sven Morgenroth. 2018. Detailed Explanation of PHP Type Juggling Vulnera-

bilities. https://www.netsparker.com/blog/web-security/php-type-juggling-
vulnerabilities/.

[34] Sven Morgenroth. 2018. Type Juggling Authentication Bypass Vulnerability
in CMS Made Simple. https://www.netsparker.com/blog/web-security/type-
juggling-authentication-bypass-cms-made-simple/.

[35] Nikic. 2020. A PHP parser written in PHP. https://github.com/nikic/PHP-Parser.
[36] Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type inference with

constrained types. Theory and practice of object systems (1999).
[37] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Detecting and exploiting second

order denial-of-service vulnerabilities in web applications. In Proceedings of the
22nd ACM Conference on Computer and Communications Security (CCS). Denver,
CO, USA.

[38] osCommerce. 2020. Website of osCommerce. https://www.oscommerce.com.
[39] PHP. 2020. PHP string in numeric contexts. https://www.php.net/manual/en/

language.types.string.php#language.types.string.conversion.
[40] PHP. 2021. Type Juggling. https://www.php.net/manual/de/language.types.type-

juggling.php.
[41] PHP-AI. 2020. PHP-ML – a machine learning library. https://github.com/php-

ai/php-ml.
[42] PHPLint. 2020. PHPLint. http://www.icosaedro.it/phplint/.
[43] PHPList. 2020. PHPList. https://www.phplist.org/.
[44] Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic type

inconsistency analysis for JavaScript. In Proceedings of the 37th International
Conference on Software Engineering (ICSE). Florence, Italy.

[45] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,
Murat Kantarcioglu, and Danfeng Yao. 2019. Cryptoguard: High precision detec-
tion of cryptographic vulnerabilities in massive-sized Java projects. In Proceedings
of the 26th ACM Conference on Computer and Communications Security (CCS).
London, UK.

[46] Chris Smith. 2015. PHP Magic Tricks: Type Juggling. https://owasp.org/www-
pdf-archive/PHPMagicTricks-TypeJuggling.pdf.

[47] Sooel Son and Vitaly Shmatikov. 2011. SAFERPHP: Finding semantic vulnerabili-
ties in PHP applications. In Proceedings of the ACM SIGPLAN 6th Workshop on
Programming Languages and Analysis for Security.

[48] Spaze. 2020. Magic hashes – PHP hash "collisions". https://github.com/spaze/
hashes.

[49] Fangqi Sun, Liang Xu, and Zhendong Su. 2011. Static Detection of Access Control
Vulnerabilities in Web Applications.. In Proceedings of the 20th USENIX Security
Symposium (Security). San Francisco, CA, USA.

[50] Fangqi Sun, Liang Xu, and Zhendong Su. 2014. Detecting Logic Vulnerabilities
in E-commerce Applications.. In Proceedings of the 2014 Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA, USA.

[51] Tyler Borland (TurboBorland). 2013. Writing Exploits For Exotic Bug Classes:
PHP Type Juggling. https://turbochaos.blogspot.com/2013/08/exploiting-exotic-
bugs-php-type-juggling.html?view=classic.

[52] W3Techs. 2020. Usage statistics of content management systems. https://w3techs.
com/technologies/overview/content_management.

[53] W3Techs. 2020. Usage statistics of PHP for websites. https://w3techs.com/
technologies/details/pl-php.

[54] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability detection. In
Proceedings of the 31th IEEE Symposium on Security and Privacy (Oakland). Oak-
land, CA, USA.

[55] WhiteHat. 2011. Magic hashes. https://www.whitehatsec.com/blog/magic-
hashes/.

[56] WikiPedia. 2020. Privilege escalation. https://en.wikipedia.org/wiki/Privilege_
escalation.

[57] Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and Wolfram Schulte. 2009.
Fitness-guided path exploration in dynamic symbolic execution. In Proceedings
of the 2009 International Conference on Dependable Systems and Networks (DSN).
Lisbon, Portugal.

[58] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and discovering vulnerabilities with code property graphs. In Proceedings of the
35th IEEE Symposium on Security and Privacy (Oakland). San Jose, CA, USA.

https://michiel.buddingh.eu/distribution-of-hash-values
https://michiel.buddingh.eu/distribution-of-hash-values
http://codiad.com
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1001000
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1001000
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10231
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10231
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10568
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10568
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8088
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8088
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8547
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8547
https://medium.com/swlh/php-type-juggling-vulnerabilities-3e28c4ed5c09
https://medium.com/swlh/php-type-juggling-vulnerabilities-3e28c4ed5c09
https://www.mediawiki.org/wiki/MediaWiki
https://www.securify.nl/blog/SFY20170103/spot-the-bug-challenge-2016-write-up.html
https://www.securify.nl/blog/SFY20170103/spot-the-bug-challenge-2016-write-up.html
https://github.com/monstra-cms/monstra
https://www.netsparker.com/blog/web-security/php-type-juggling-vulnerabilities/
https://www.netsparker.com/blog/web-security/php-type-juggling-vulnerabilities/
https://www.netsparker.com/blog/web-security/type-juggling-authentication-bypass-cms-made-simple/
https://www.netsparker.com/blog/web-security/type-juggling-authentication-bypass-cms-made-simple/
https://github.com/nikic/PHP-Parser
https://www.oscommerce.com
https://www.php.net/manual/en/language.types.string.php#language.types.string.conversion
https://www.php.net/manual/en/language.types.string.php#language.types.string.conversion
https://www.php.net/manual/de/language.types.type-juggling.php
https://www.php.net/manual/de/language.types.type-juggling.php
https://github.com/php-ai/php-ml
https://github.com/php-ai/php-ml
http://www.icosaedro.it/phplint/
https://www.phplist.org/
https://owasp.org/www-pdf-archive/PHPMagicTricks-TypeJuggling.pdf
https://owasp.org/www-pdf-archive/PHPMagicTricks-TypeJuggling.pdf
https://github.com/spaze/hashes
https://github.com/spaze/hashes
https://turbochaos.blogspot.com/2013/08/exploiting-exotic-bugs-php-type-juggling.html?view=classic
https://turbochaos.blogspot.com/2013/08/exploiting-exotic-bugs-php-type-juggling.html?view=classic
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://www.whitehatsec.com/blog/magic-hashes/
https://www.whitehatsec.com/blog/magic-hashes/
https://en.wikipedia.org/wiki/Privilege_escalation
https://en.wikipedia.org/wiki/Privilege_escalation

	Abstract
	1 Introduction
	2 Understanding Loose Comparison Bugs
	2.1 Loose Comparisons
	2.2 Loose Comparison Bugs
	2.3 Existing Work

	3 Problem Statement
	3.1 Definition of Loose Comparison Bugs
	3.2 Threat Model
	3.3 Research Goals and Research Scope
	3.4 Research Challenges

	4 Design
	4.1 Static Analysis
	4.2 Dynamic Analysis

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Bug Detection
	6.3 Comparison with Related Work
	6.4 Performance
	6.5 Case Studies

	7 Discussion and Future Work
	8 Related work
	9 Conclusion
	References

