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Abstract
Directed fuzzers often unnecessarily explore program code
and paths that cannot trigger the target vulnerabilities. We
observe that the major application scenarios of directed
fuzzing provide detailed vulnerability descriptions, from
which highly-valuable program states (i.e., target states) can
be derived, e.g., call traces when a vulnerability gets triggered.
By driving to expose such target states, directed fuzzers can
exclude massive unnecessary exploration.

Inspired by the observation, we present SDFUZZ, an effi-
cient directed fuzzing tool driven by target states. SDFUZZ
first automatically extracts target states in vulnerability re-
ports and static analysis results. SDFUZZ employs a selective
instrumentation technique to reduce the fuzzing scope to the
required code for reaching target states. SDFUZZ then early
terminates the execution of a test case once SDFUZZ probes
that the remaining execution cannot reach the target states.
It further uses a new target state feedback and refines prior
imprecise distance metric into a two-dimensional feedback
mechanism to proactively drive the exploration towards the
target states.

We thoroughly evaluated SDFUZZ on known vulnerabili-
ties and compared it to related works. The results show that
SDFUZZ could improve vulnerability exposure capability
with more vulnerability triggered and less time used, outper-
forming the state-of-the-art solutions. SDFUZZ could signif-
icantly improve the fuzzing throughput. Our application of
SDFUZZ to automatically validate the static analysis results
successfully discovered four new vulnerabilities in well-tested
applications. Three of them have been acknowledged by de-
velopers.

1 Introduction

Directed grey-box fuzzing (DGF) usually drives the testing
towards highly-valuable target site locations. Though being
widely used in crash reproduction and vulnerability valida-
tion [3, 7, 16, 26, 42], one primary problem of prior directed

fuzzers is that they often explore a large number of program
code and paths that cannot trigger the crashes. In the ex-
ploration stage of DGF, most existing approaches follow
AFLGo’s solution [26] and use coverage feedback for ex-
panding the exploration of different code areas. Many code
areas are irrelevant and unrequired for reaching the target
sites [32]. Such code areas are still unnecessarily explored. In
the exploitation stage, prior directed fuzzers utilize the dis-
tance metrics based on the control-flow graph (CFG) and call
graph (CG) [3,7,26]. The distance metrics do not consider the
path conditions, such as control-flow and data-flow conditions.
As a result, executions that cannot trigger the vulnerabilities
at the target sites because of unsatisfiable control-flow or
data-flow conditions might still gain short distances and be
overly favored [14, 16, 44]. Excessive testing efforts are thus
wasted [44].

A solution to mitigate the above-mentioned problem is
to first identify the required program code/paths for trigger-
ing the crashes and fuzz only the required one(s). Sieve-
Fuzz analyzes the inter-procedural control-flow graph (ICFG)
to identify required functions for reaching the target sites
and terminates the executions once they reach unrequired
functions [32]. Beacon computes the preconditions to reach
the target sites via a backward interval analysis and early
terminates the executions that fail to satisfy the precondi-
tions [14]. SelectFuzz [20] statically identifies the control-
and data-dependent code to the target sites. However, they
over-approximate the set of allowed program code and paths,
significantly restricting their performance. This is because
their analysis is conservative. They only consider the control-
flow reachability but fail to analyze other conditions for trig-
gering the vulnerabilities, e.g., the expected reaching order of
the target sites [16]. Hawkeye [3] and CAFL [16] include call
traces in their designs of distance metrics. However, they do
not use them to exclude unrequired code/paths.

We mitigate the problem of unnecessary exploration in
DGF with a new finding of target states, which include the
expected call traces and reaching order of the target sites for
triggering the vulnerabilities. In particular, the major tasks of
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DGF, such as crash reproduction and vulnerability validation,
all provide detailed descriptions of vulnerabilities, such as
the target site locations and the associated vulnerability infor-
mation, e.g., crash dumps, backtraces [10], and source-sink
flows [35]. Target site locations describe where the vulnerabil-
ities would occur; the vulnerability information additionally
explains the interesting program states (namely target states)
about how to trigger the vulnerabilities. The goal of directed
fuzzing is not only to reach the target site locations but also to
dynamically expose the vulnerabilities. Inspired by this, we
aim to drive the fuzzing towards not only the target sites but
also the interesting target states. Thus, besides excluding the
exploration that cannot reach target sites, we further avoid the
unnecessary executions that cannot reach the target states.1

We thereby design SDFUZZ, a target State driven Directed
Fuzzer. We first formalize the target state of a vulnerability
as an ordered list of program execution events (i.e., the stack
of function invocations at the vulnerability site). SDFUZZ
then automatically extracts the target states from vulnerability
reports and static analysis results. It takes a selective instru-
mentation technique to reduce the fuzzing scope to the code
required for reaching the target states. In particular, based
on the functions in the target states, SDFUZZ analyzes the
calling relationship in the inter-procedural control-flow-graph
(ICFG) to identify (un)required code. Unlike prior works that
directly terminate all executions on unrequired code (identi-
fied based on target sites), SDFUZZ still preserves all code
of the software but instead removes the code coverage feed-
back from unrequired code (identified based on target states).
The unrequired code is hidden from the fuzzer’s perspective,
SDFUZZ thus would not assign excessive energy to overly
test it. This design choice gets rid of the acute side effects of
false code elimination and is fault tolerant: executions can go
through (wrongly identified) unrequired code to target sites
without being (wrongly) terminated.

SDFUZZ early terminates the execution of a test case once
it probes that the remaining execution cannot lead to the tar-
get states. One challenge we face is how to determine if an
execution cannot ultimately lead to the target states without
completing the execution. We solve the problem by monitor-
ing runtime program state. At runtime, SDFUZZ maintains
the runtime program state, periodically compares it to the
target state, and probes if there is any deviation. Situations
with any deviation that cannot be recovered in the subsequent
execution of a test case can be terminated immediately. A
deviation can be recovered if there is a program path on the
ICFG, through which the deviation function call can possibly
be updated to the expected function call specified in the target
state.

Besides reducing resource consumption by avoiding un-
necessary exploration, SDFUZZ further employs a two-
dimensional feedback mechanism to proactively drive the

1By the term of reaching target states, we mean the execution could
exhibit such target program states.

testing towards target states. In the first dimension, SDFUZZ
calculates a novel target state feedback by computing a simi-
larity score from the best runtime program state of a fuzzing
trial to the target states. This dimension aims to favor test
cases with better runtime program states. In the second dimen-
sion, SDFUZZ refines the widely-adopted distance metrics
in DGF. Instead of using an empirically configured constant
coefficient (e.g., 10 in AFLGo [26]) as the inter-procedural dis-
tance between functions in CG, SDFUZZ uses a new weighted
inter-procedural distance by approximating the chance for
the caller function to invoke the callee function. The two-
dimensional feedback is then used for the power scheduling
and seed selection.

We thoroughly evaluated SDFUZZ to assess its capability.
We first show that SDFUZZ could generate target states for the
majority of bugs in the Magma dataset [13,21], demonstrating
its applicability to real-world cases. Besides, on 45 known
vulnerabilities, we compared SDFUZZ to four related state-
of-the-art directed fuzzers, i.e., AFLGo [26], WindRanger [7],
Beacon [14], and SieveFuzz [32]. The results show that
SDFUZZ exposed eight, seven, ten, and four more vulner-
abilities, respectively, and achieved an average2 speedup of
2.83×, 2.65×, 1.29×, and 1.81×, respectively, above them.
SDFUZZ achieved the best performance for 77.8% of the
evaluated vulnerabilities. Our ablation study confirmed the
essence of target states to the performance of SDFUZZ. It also
showed the benefit of each technique in SDFUZZ, especially
the selective instrumentation and execution termination tech-
niques. For instance, on average, SDFUZZ eliminated 48.18%
of unrequired functions and early terminated 56.23% of exe-
cutions. Furthermore, we applied SDFUZZ to automatically
extract target states from the results of a static analysis tool—
SVF [35]—and validate the results. SDFUZZ successfully
identified four new vulnerabilities in three well-tested file
processing applications (e.g., libjpeg). Three of them have
been promptly acknowledged by the developers. We plan to
open-source SDFUZZ to facilitate future research.

In summary, this paper makes the following contributions:
• We proposed a new concept of target states and demon-

strated their benefits for DGF.
• We designed SDFUZZ, an efficient directed fuzzing system

driven by target states.
• We incorporated DGF with static analysis to fully automat-

ically validate the results.
• With SDFUZZ, we discovered four new vulnerabilities.

2 Background and Motivation

In this section, we present the background of directed grey-
box fuzzing and its representative use examples. We then
analyze existing DGF approaches to motivate our solution.

2The average values are computed using the geometric mean instead of
arithmetic mean throughout this paper.
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2.1 Directed Grey-Box Fuzzing

DGF differentiates itself from general coverage-guided grey-
box fuzzing in specializing in testing specific code locations.
DGF employs an exploration stage driven by the code cov-
erage feedback to expand the covered code locations. Ad-
ditionally, DGF has an exploitation stage, where past prac-
tices mainly employ distance metrics for providing runtime
feedback to guide testing direction [7, 16, 26]. For instance,
AFLGo defines the distance of a basic block as the harmonic
mean of its shortest path lengths to all target sites [26]. In
a shortest path, the path length is the sum of the weighted
inter-procedural CG distance from the caller function to the
target function and the intra-procedural CFG distance from
the basic block to the call site’s basic block. During a fuzzing
trial, a directed fuzzer obtains the execution trace of a test
case and computes the average distance of the executed basic
blocks as the seed distance. It then uses the distance for seed
selection and power scheduling.

2.2 Use Examples of DGF

Directed fuzzers can generally be used to test particular target
sites. We show some representative use examples of DGF
below.
Reproducing crashes. Software developers often accept
vulnerability reports from users. Automated crash report sys-
tems [11] collect crash reports from end users and send them
to the developers. Since the crash inputs usually convey sensi-
tive user data (e.g., confidential cookies for browser crashes),
such systems by default do not attach the crashing proof-of-
concept (PoC) inputs [6]. They instead often provide the crash
dumps, which contain the crash types and locations, and the
involved call traces when the crashes occur. DGF is then help-
ful for the developers to reproduce the crash specified in the
crash dumps. Even if PoC inputs are available, developers
may still want to use DGF to comprehend the vulnerabilities
and patches.

DGF can address the limitations of symbolic execution
based crash reproduction tools. For instance, Star [4], JCharm-
ing [28], and BugRedux [15] perform symbolic execution
on the slices to target sites. However, they usually collect
non-linear, incomplete, and complex path constraints and do
not handle external environments, rendering PoC generation
through constraint solving difficult [41]. DGFs can address
such complex issues by efficient input mutation.
Validating vulnerabilities. Static analysis screens the source
code of the program and outputs potential vulnerabilities. The
analysis results commonly include vulnerability locations and
assumed suspicious flows for the vulnerabilities [29,33,34,39].
To reduce the huge number of false positives, developers can
leverage DGF to proactively find PoCs on the suspicious flows
and validate the results. Instead of considering all possible
flows and paths, a desired DGF ought to focus on only the

suspicious flows in the results.

2.3 Existing Approaches and Limitations
Directed fuzzers often unnecessarily test code and paths that
cannot trigger the vulnerabilities. This occurs in both the
exploration and exploitation stages. We illustrate it with a
motivating example shown in Figure 1. There is an assertion
failure at L20, which is often set as the target site in DGF. The
execution through L4 in function main() (namely execution
1 ) can reach the target site and possibly trigger the assertion
failure. The execution going through L6 (namely execution
2 ) can only reach the target site.
Unnecessary exploration stage testing on unrequired code.
DGF has the goal of reaching target sites and triggering the
vulnerabilities there. Its exploration stage directly adopts the
conventional coverage metric to expand the covered code,
which would favor the executions/test cases that increase the
coverage (i.e., new code discovery). However, a large propor-
tion of code is not required for reaching the target sites and
would negatively interfere the exploration direction of DGF.
For instance, the function clean() is not helpful for reaching
L20.
Unnecessary exploitation stage testing on (un)reachable
executions. Even after narrowing down the fuzzing scope
to the required code, the exploitation stage still causes un-
necessary resource consumption on both executions that can
or cannot reach the target sites, i.e., reachable and unreach-
able executions. As we mentioned in §2.1, DGFs use distance
metrics in the exploitation stage [3, 16, 26]. The distance met-
rics are simply based on the ICFG without analyzing path
conditions. Thus paths with unsatisfiable conditions can be re-
garded as feasible ones. The corresponding executions might
obtain short distances and get overly favored.

2.3.1 Prior Mitigations

A solution to mitigate this problem is to identify the un-
required code/paths for triggering the vulnerabilities. Bea-
con [14] statically identifies unrequired code based on the
reachability to target site locations. It immediately terminates
executions through assertions once the executions trigger un-
required code. SieveFuzz [32] further integrates a dynamic
analysis to identify unrequired code and then accordingly
terminates executions. SelectFuzz [20] identifies the data-
and control-dependent code to the target sites. However, they
merely leverage the reachability to the target site locations
to drive their required code identification. They could not
sufficiently exclude other unrequired code.

Beacon also inserts assertion checks to early terminate
executions unsatisfying the preconditions for reaching the
target sites through a backward interval analysis. However,
the current design of Beacon has two foundational problems.
First, to terminate the executions early, the backward interval
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1 void main() {
2 int x = input();
3 if(x < 10)
4 option1(x); //(1)
5 else
6 option2(x); //(2)
7 clean();
8 }
9

10 void option2(int opcode) {
11 target(opcode);
12 }

13 void option1(int opcode) {
14 check();
15 target(opcode + 5);
16 }
17

18 void target(int arg) {
19 if (arg <= 20) {
20 assert(arg < 5);
21 }
22 ...
23 }

(a) Code example.

main

option1 option2

target

clean

L6L4

L7

L14 L11

L19

L20

L2

L22

check

input

(b) ICFG.

Figure 1: A motivating example. The starting line number of a basic block is used as its name in Figure 1(b).

analysis produces complex preconditions, which introduce
significant runtime overhead [32]. Second, the preconditions
merely embed the control-flow reachability to the target sites
without considering additional important information such
as call traces and the reaching order of the targets [16]. As a
result, Beacon would not terminate reachable executions like
execution 2 .
Summary. The majority of distance-based DGFs do not lever-
age any method to exclude unnecessary exploration. They
unnecessarily test code and paths in both the exploration and
exploitation stages. Prior mitigation approaches [14, 20, 32],
however, only consider the reachability to the target sites,
yet still keep many unnecessary executions. In this work, we
tackle these problems and improve the effectiveness of DGF
by exploiting target states.

3 Target States

DGFs specify the target sites—code locations of interest. The
target sites often come from two sources: 1) vulnerability
reports and 2) static analysis results. We find that from the
two sources, we can additionally identify target states, which
include the expected call traces and reaching order of the tar-
get sites. The target states are helpful for improving directed
fuzzing.

3.1 Vulnerability Reports

Software developers often accept vulnerability reports from
users. Most vulnerability reports in the wild contain associ-
ated crash dumps to help developers confirm the vulnerabil-
ities timely. For example, Figure 2 presents the crash dump
(call trace) for the assertion failure in Figure 1. It captures a
list of function calls that are currently active in the thread and
the invocation locations when the crash is triggered. The libc
in the crash dump means the library that starts the execution
of the main function. Prior DGFs often set the erroneous lo-
cations at the top of the crash dump (i.e., crash points) as the

1 0x... in target file.c:20
2 0x... in option1 file.c:15
3 0x... in main file.c:4
4 0x... in in __libc_start_main

Figure 2: Crash dump.

fuzzing target sites, e.g., file.c:20 in this example.
However, the crash point is only a part of the crash dump.

The crash dump pinpoints a highly-valuable call trace about
the reported crash, through which the vulnerability can be
easily reproduced. With only the target site locations, directed
fuzzers would unnecessarily explore many infeasible program
states (e.g., execution 2 ). Driving a directed fuzzer to invoke
the list of functions conforming to the crash dump could
enable it to trigger the vulnerability quickly. Furthermore, for
multi-target vulnerabilities (e.g., use-after-free), there can be
associated call traces for each involved target site, and their
expected reaching order can be inferred [16]. In this work,
we define the expected call traces and the reaching order
of target sites as target states. No prior directed fuzzer has
used the target states to eliminate unnecessary exploration.
Prior solutions [14, 32] only use the target site locations and
partially exclude exploration that could not reach the target
sites.

Crash dumps are available in most of the vulnerability
reports, from which target states can be extracted. We studied
four popular file processing applications such as swftophp
and lrzip, to which fuzzing has been widely applied [14, 26].
We examined all historical crashes in the applications and
summarized an unbiased dataset of 259 crashes. We found that
crash dumps existed in 191 (73.75%) cases. This demonstrates
that target states can be obtained in most cases. A solution
that requires the target states still has wide applicability.

3.2 Static Analysis Results

Static analysis is based on heuristics and often outputs de-
tailed information for analysts to comprehend the analysis
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results. Static analysis tools report the vulnerable flows to the
target sites where the conditions of the heuristics are met. For
instance, Joern [39]—a taint analysis tool—would report the
vulnerable flow from the untrusted external data sources to
the target sites. SVF [34, 35] for memory-safety issues would
report vulnerable program flows of improper memory usage.

Prior directed fuzzers often set the memory operations in
the reported flows as the target sites. This would make DGF
explore all possible paths to the target sites. However, there
are abundant flows that do not meet the conditions of the
heuristics. Testing them causes non-negligible resource waste.
To efficiently validate the vulnerability, a fuzzer ought to focus
on exhibiting the vulnerable flows instead of all possible ones.
Similar to vulnerability reports, we can derive the expected
target states from such commonly provided vulnerable flows
in static analysis results.

3.3 Formalization

We define a general representation of program states used in
this work, as shown in Formula 1. We learn from examples
(e.g., Figure 2) that the crash dumps contain a sequence of
ordered function calls and the invocation locations. We thus
formalize a program state (PS) as the stack of function invoca-
tions (call sites). Each item in the program state is a tuple of
the function name and the invocation location ((Func, Loc)).
The target state (TS) of a vulnerability or a bug is the program
state when it is triggered. To reach a target state, the functions
in it ought to be reached or called in the right order. Therefore,
Formula 1 captures the expected call traces and their reach-
ing order. For example, we can formalize the crash dump in
Figure 2 as the target state (TS1) shown in Figure 4(a). For
multi-target vulnerabilities, we can usually derive one target
state per target site and sort them to obey the required target
reaching order (TSs) [16]. Similarly, the target states of static
analysis results can be formalized using program states.

PS = [(Func1,Loc1),(Func2,Loc2), ...,(Funcn,Locn)]
T Ss = [T S1,T S2, ...,T Sm]

(1)

4 SDFUZZ

4.1 Overview

We advance DGF using target states. In the vast exploration
space of a program, a significant proportion cannot trigger
the target vulnerabilities. Testing all of it would cause un-
necessary resource consumption. Fortunately, target states
describe interesting program states where the vulnerabilities
would (likely) occur. Our intuition is to drive the fuzzing to
exhibit these interesting target states instead of merely reach-
ing the target site locations. We use the target states from

…

(f1, L1)

(f2, L2)

(f1, L1)

TS PS1

Source

Code

Instrumented

Executable

FUZZINGINSTRUMENTATION

…

(f1, L1)

PS2

Selective

Instrumentation

Early Termination

Two-Dimensional 

Feedback

Figure 3: The workflow of SDFUZZ.

vulnerability reports and static analysis results to exclude un-
necessary exploration that cannot reach the target states. We
further design new techniques to proactively guide the testing.
Hawkeye [3] and CAFL [16] also use call traces in their dis-
tance design to guide the exploration. They still consider the
whole exploration space of a program. SDFUZZ starts from a
different angle by proactively removing unnecessary testing.

We thereby develop a new directed fuzzing system,
SDFUZZ, based on the target states. The workflow of
SDFUZZ is depicted in Figure 3. SDFUZZ first automatically
extracts target states and parses them into specified formats.
SDFUZZ then identifies the required code for reaching the
target states and removes other unrequired code from fuzzing.
It particularly advances prior solutions [14, 32] in using the
target states instead of target sites. SDFUZZ early terminates
the executions once it probes that the remaining execution of
a test case cannot reach the target states, thereby increasing
the fuzzing throughput (i.e., number of executions per unit
time). SDFUZZ uses a two-dimensional feedback mechanism
to proactively guide the testing towards the target states. In
the first dimension, SDFUZZ measures the similarity between
the best runtime state of a test case and the target states, and fa-
vors the ones with higher similarity. In the second, SDFUZZ
adopts a new precisely-weighted inter-procedural distance
metric.

4.2 Extracting Target States

To extract the target states, SDFUZZ requires either vulnera-
bility reports or static analysis results. For the latter, SDFUZZ
employs an existing static analysis tool to analyze the pro-
gram’s source code.
Vulnerability reports. The crash dump consists of the
records of the active function calls when a vulnerability is
triggered, as shown in Figure 2. Each record contains: 1)
function name (e.g., option1) and 2) invocation location (e.g.,
file.c:15). Therefore, we first search the vulnerability re-
ports about descriptions containing such information using
regular expressions. After extraction, we further parse them
to decide if they match the formats defined in Formula 1. We
also automatically sort the target states based on the vulnera-
bility types and the descriptions. For example, a use-after-free
vulnerability often contains multiple target states. We would
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Algorithm 1: Required code identification.

input :TSs, ICFG
output :requiredFuncs

1 initRequiredFuncs← [ ]
2 requiredFuncs← [ ]
3 for TS ∈ TSs do
4 for f ∈ TS do
5 initRequiredFuncs.insert(f)
6 funcs← backwardAnalysis(f, ICFG) // get

functions with intra-procedural dependencies

7 initRequiredFuncs.insert(funcs)
8 end
9 end

10 while ! initRequiredFuncs.empty() do
11 f← initRequiredFuncs.remove()
12 if f /∈ requiredFuncs then
13 requiredFuncs.insert(f)
14 callees← getCallees(f, ICFG) // get callees

of f

15 initRequiredFuncs.insert(callees)
16 end
17 end
18 return requiredFuncs

sort the target states sequentially by the free and the use site.

Static analysis results. SDFUZZ also automatically extracts
the target states from the static analysis results. Since differ-
ent static analysis tools take diverse ways to represent their
results, naturally, the automated extraction has to be specially
designed for each static analysis tool. We currently develop
SDFUZZ to coordinate with one popular static analysis tool,
SVF [34, 35]. To the best of our knowledge, target states can
be extracted from other static analysis tools such as Cod-
eQL [9] and Joern [39] with only additional efforts to parse
the results. The program’s source code is usually required for
running such static analysis tools.

4.3 Selective Instrumentation of Required
Code

SDFUZZ reduces the fuzzing scope by selectively instrument-
ing only the required code for coverage feedback in the explo-
ration stage of DGF. SDFUZZ first identifies what part of the
code is required and then deliberately excludes the other unre-
quired code from the fuzzing process. Our solution preserves
the code required for reaching the target states, which is a
subset of the code for reaching the target sites as preserved
in SieveFuzz and Beacon. This is because the target states
further constrain the paths to reach target sites. It thus can
help filter out much more code and improve fuzzing through-
put. Our solution selectively instruments the required code
for code coverage feedback instead of directly removing it
from the source or executable.

We propose a function-level algorithm shown in Algo-

rithm 1 to identify the required code. It takes as inputs a
set of target states (TSs) and the ICFG of the target program
(ICFG). The functions appearing in the target states (namely
target state functions) are related to the vulnerabilities and are
directly included as the required functions (line 5). Besides,
these target state functions might depend on other functions.
Our algorithm first performs a backward intra-procedural
analysis to identify the functions that a target state function
depends on (line 6). A function is included if there is an
intra-procedural path between the basic block that has a func-
tion call site and the basic block of a target state function.
For instance, function check() is included because function
target() at L15 depends on it. Additionally, those newly in-
cluded functions might invoke other functions to accomplish
their functionalities. Therefore, our algorithm analyzes the
CG and includes those functions on the CG paths outing from
the initially included functions (lines 14-15). In this way,
SDFUZZ expands the set of functions required for realizing
the target states. The callee functions of check() are added
to the required code for this.

Instead of directly removing the code from the target exe-
cutable, SDFUZZ employs an instrumentation-based method
to exclude unrequired code. We find that DGF requires col-
lecting code coverage feedback, which reveals the existence
of code areas. SDFUZZ thus selectively instruments only the
identified required code for code coverage feedback, which
hides the other unrequired functions from the fuzzer and re-
duces the fuzzing scope. This design is fault-resilient. Even if
some code areas are wrongly identified as unrequired, execu-
tions can still go through such code areas to further approach
the target sites and states. SDFUZZ would not assign testing
energy to explore the paths that are not instrumented. Thus it
gets rid of the critical downside caused by false code elimina-
tion in prior solutions [14, 32]. It also reduces the overhead
caused by the instrumented coverage tracking code.

4.4 Early Termination of Executions

We develop a new fuzzing technique that early aborts the exe-
cutions that cannot reach the target states. If some executions
are known to be unable to reach the target states, we termi-
nate them early to save the exploration resources. This can
dramatically increase the fuzzing throughput by terminating
unnecessary executions early. Unlike prior reachability-based
execution termination approaches [14, 32], SDFUZZ also ter-
minates reachable executions that cannot reach the target
states.

To perform the early termination of executions, we have
to predict if the execution can ultimately reach the target
states or not. This is difficult because the program state is
dynamically updated along the program execution, e.g., via
function invocations and returns. Given the high complexity
of modern programs, the program state space they can exhibit
can be huge [1].
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TS1=[(main, libc), (option1, L4), (target, L15)]

PS1=[(main, libc), (input, L2)]
PS2=[(main, libc), (option1, L4)]
PS3=[(main, libc), (clean, L7)]

(a) A target state and selected program states.

(option1, L4)

(main, libc)

(input, L2)

(main, libc)

(clean, L7)

(main, libc)

PS1 PS2 PS3

(target, L15)

(option1, L4)

(main, libc)

TS1

(b) Target state and selected program states, with the root deviations are in blue.

Figure 4: A target state and selected program states.

Runtime program state monitoring. SDFUZZ monitors the
runtime function invocations and records the stack of func-
tion invocations. These functions are pushed or popped from
the stack with function invocations or returns. The function
invocation locations enable SDFUZZ to distinguish the same
function invoked at different locations. Program state tracking
might potentially lead to state explosion [38] and can cause
heavy overhead. We mitigate this issue by tracking the states
for only the functions relevant to the target states. In particu-
lar, SDFUZZ only updates and checks the program state for
early termination when the program calls or returns from the
functions in target states.
An unrecoverable deviation based solution. As mentioned
in §3.3, the target states for a multi-target vulnerability are an
array of ordered lists of function call invocations, each for a
target site. Our algorithm (shown in Algorithm 2) thus takes
as inputs the current program state (PS) at a point in time, pre-
viously reached target states (reachedTSs), the ordered target
states (TSs), and the ICFG. It iterates over the target states to
find the first target state that has not been reached during a
fuzzing trial of a test case (lines 3-6). If all target states have
been reached, the algorithm directly returns (lines 7-8). Other-
wise, it then checks the deviation function calls, especially the
first deviation—root deviation through rootDeviation func-
tion (line 10). The root deviation denotes where the program
state starts to deviate from the unreached target state. This is
done by iteratively comparing the call sites (lines 20-26) to
find the first deviation.

If there is any deviation (line 11), our algorithm further
measures if the remaining execution can recover the devia-
tions to reach the target state based on the ICFG (line 12).
If an execution has unrecoverable deviations in its program
state, it can be immediately terminated. Our algorithm checks
the ICFG of the program and probes if there is a program path
from the root deviation code location to the expected function
call in the target state. Such a path means the deviations might
be recovered in the future execution because the execution
can return from the root deviation function call and run to the
expected one. Accordingly, the execution that might recover
the deviation would not be terminated.

We illustrate the workflow of our algorithm with three
program states of an execution (namely PS1-PS3) listed in Fig-
ure 4. PS1 is observed when the execution reaches right after
line 2. The program state deviates from the target state (i.e.,

TS1) in the second item, i.e., (input, L2) v.s. (option1, L4).
The deviation is possibly recoverable because subsequent exe-
cution might return from the function input() and run next to
the expected function option1() at L4. From the perspective
of ICFG, this can be reflected as the existence of a program
path from the deviation location (e.g., L2) to the expected one
(e.g., L4). Thus the execution would not be terminated at PS1.
At PS2, the program state is exactly the prefix of TS1 without
additional deviations and does not deviate from TS1. The exe-
cution would not get terminated. However, in the case of PS3,
it deviates at (clean, L7) against the (option1, L4) in TS1,
and there is no path from L7 to L4. The execution would get
terminated. Beacon’s solution [14], on the other hand, is not
able to terminate the execution in the middle.

4.5 Two-Dimensional Feedback

4.5.1 Target State Feedback

SDFUZZ also compares the runtime program states to the
target states and computes a similarity score to proactively
guide the exploration. The feedback favors test cases with
more similar program states to the target states. Some recent
works such as CAFL [16], LOLLY [17], and Hawkeye [3] also
use the runtime program behaviors. However, the mechanism
in SDFUZZ is tailored to target states and considers calling
contexts.

The workflow is also shown in Algorithm 2. After finding
the first unreached target state (nextTS) at lines 3-6, SDFUZZ
uses the index of the root deviation to compute the similarity
score. If the current program state does not fully match the
first unreached target state (nextTS), SDFUZZ first measures
how well the current program state fits it by computing the
ratio of matched deviationIdx over its size (line 13). Our
algorithm also considers previously reached target states and
sums a score of the ratio and the size of reachedTSs. The
score is further normalized using the number of target states
and returned. If the current program state matches nextTS,
our algorithm directly returns the proportion of reached target
states (line 16). Since the algorithm might be invoked multiple
times for the execution of a test case, we assign the best score
as the result of the test case.
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Algorithm 2: Execution termination and target state similarity.

input :PS, TSs, reachedTSs, ICFG
output :score, termination, reachedTSs

1 nextTS← null
2 termination← false
3 for TS ∈ TSs\reachedTSs do
4 nextTS← TS // find next target state
5 break
6 end
7 if nextTS = null then
8 return 1, false, reachedTSs
9 end

10 deviationIdx← rootDeviation(PS, nextTS)
11 if deviationIdx ̸= nextTS.size then
12 termination← ! ICFG.path.exists(PS[deviationIdx],

nextTS[deviationIdx]) // check if recoverable
13 score← (deviationIdx / nextTS.size + reachedTSs.size)

/ TSs.size
14 else
15 reachedTSs.insert(nextTS) // no deviation
16 score← reachedTSs.size / TSs.size
17 end
18 return score, termination, reachedTSs
19

20 function rootDeviation(PS,T S):
21 index← 0
22 for index<min(PS.size, TS.size) & PS[index]=TS[index]

do
23 index← index + 1
24 end
25 return index
26 end

4.5.2 Distance Feedback

SDFUZZ also uses a distance metric to guide the fuzzing
process. Prior distance metrics are imprecise because they
consider every edge in CG equally. They empirically con-
figure a constant weight (e.g., 10 in AFLGo-based directed
fuzzers) to approximate the chance for reaching the target
functions [3, 26]. Therefore, executions exhibiting long call
chains, even with high chances to reach the target functions,
are possibly assigned with large distance values and get depri-
oritized. Distinct functions ought to be evaluated differently.

SDFUZZ mitigates the imprecision with precise edge
weights when computing inter-procedural distances. The edge
weight is expected to reflect the chance for the caller function
to invoke the callee function. SDFUZZ computes the edge
weight based on the call-site weights. We define the call-
site weight for a caller function to invoke a callee function
as the intra-procedural distance from the start of the caller
function to the call site of the callee (i.e., the basic block
distance on the shortest path as in AFLGo [26]). Since there
might be multiple call sites to the same callee function, the
inter-procedural edge weight is the shortest call-site weight
(weight( fi, f j)) between the caller function fi() and the callee
function f j(). This is also shown in Formula 2, where d fi()

computes the intra-procedural distance in function fi. For the
function option1() in Figure 1, since the function start and
the call site of the function check() reside in the same basic
block, their edge weight is 0 instead of 10 as in AFLGo.

weight
(

fi, f j
)
= min

(
d fi

(
BB fi−start , BB f j−call−site

))
(2)

The edge weights between callers and callees form a
weighted CG. This allows SDFUZZ to compute precise CG
distance between two arbitrary functions. We formalize the
method to compute inter-procedural distance in Formula 3. If
there is at least one path from function fs to function fe in the
CG, their distance is calculated as the sum of edge weights in
the shortest path. Otherwise, if there is no path from function
fs to function fe, the distance is considered as not available
or infinite. We explain how we construct CG in §5.

interDistance( fs, fe) = min
(

∑ ( fi , f j)∈pathweight
(

fi, f j
))

(3)

4.5.3 Seed Selection and Power Scheduling

SDFUZZ incorporates the two dimensions of feedback to
guide the seed selection and power scheduling. To drive the
fuzzing towards the target states quickly, SDFUZZ sorts the
seeds in the corpus sequentially by two attributes—target
state feedback and seed distance. Generally, SDFUZZ prefers
seeds with better target state feedback and shorter distances. It
uses target state feedback as the primary sorting attribute and
distance as the secondary. The reason is that the target state
feedback capturing the runtime context is more precise, and
could better help approach target states. SDFUZZ also refines
the power scheduling algorithm of AFLGo to assign energy
to the seeds according to the two-dimensional feedback.

5 Implementation

We implement a prototype of SDFUZZ to fuzz C/C++ pro-
grams. We first use static analysis to build a program rep-
resentation to facilitate the required code identification and
execution termination. We then employ a compile-time analy-
sis to instrument the target program, which inserts the neces-
sary code for tracking coverage, maintaining program states,
computing seed distances, etc. Besides, we develop a runtime
library to retrieve runtime program states and perform selec-
tive execution termination. The main fuzzing component was
implemented atop AFLGo [26].
Static analysis. We statically analyze the target program to
identify the required functions (§4.3). The analysis leverages
Andersen’s points-to analysis to identify the call targets for
indirect calls [31]. Our implementation currently reuses the
associated pipeline of SVF [34]. This results in the CFG and
CG for our analysis. We also discuss the potential issues of
static analysis in §7.
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Instrumentation. We maintain the list of interesting func-
tions obtained from §4.3 and selectively instrument them for
code coverage feedback. Other functions not in the list are
still preserved but are not instrumented for code coverage
feedback. As a result, they can still be executed. The instru-
mentation component is realized by modifying AFL’s LLVM
compiler.

Runtime state tracking. We implement a runtime library
for program state maintenance and selective execution termi-
nation. In the library, we track only a set of functions that are
relevant to the target states and maintain the stack of function
invocations. At runtime, the library periodically compares
the program state to the target state(s) to determine early
execution termination. Besides, it also scores the runtime
program states to provide target state feedback. We modify
the update_bitmap_score() and cull_queue() functions in
AFL to achieve our seed selection strategies.

6 Evaluation

In this section, we extensively evaluate SDFUZZ to answer
the following questions.
• How well can SDFUZZ generate target states in practice?
• What is the capability of SDFUZZ in exposing vulnerabili-

ties?
• How much unnecessary exploration can SDFUZZ reduce?
• How do the techniques in SDFUZZ contribute to its perfor-

mance?
• How effective is SDFUZZ in discovering new vulnerabili-

ties?

6.1 Target State Generation Capability

We first assess if SDFUZZ can automatically extract target
states for real-world vulnerabilities. We choose Magma [13,
21], a widely-used fuzzing benchmark containing 138 bugs
along with their corresponding reports. We check the crash
dumps for the included bugs and then apply SDFUZZ to ex-
tract target states. After that, we manually verify the correct-
ness of the extracted target states.

The results show that SDFUZZ could successfully extract
correct target states for 127 out of 138 cases, where the crash
dumps are included in the bugs’ reports. This suggests the
high applicability of SDFUZZ for real-world bugs. SDFUZZ
could not generate target states for the cases without available
crash dumps. The vulnerabilities have diverse target states,
e.g., the number of targets ranges from one to three, and the
number of function invocations ranges from two to six. Em-
pirically, we have not observed an impact of target states on
the performance of SDFUZZ.

6.2 Performance of SDFUZZ

We then evaluate the performance of SDFUZZ on a set of
known vulnerabilities.
Experimental Setup. We construct a comprehensive dataset.
In particular, we include the programs and vulnerabilities
evaluated by other recent DGFs [7,14,20,32]. Google Fuzzer
Test Suite [12] and AFLGo’s Test Suite [27] are also included.
In total, we include 45 unique vulnerabilities in our dataset,
and we list them in Table 1. Other vulnerabilities evaluated
by recent DGFs are excluded from our evaluation mainly
because of compilation issues such as obsolete and missing
dependencies and incompatible compilation environments.
The included vulnerabilities span a comprehensive set of vul-
nerability types such as buffer overflow, heap overflow, etc.,
and can well evaluate the capability of SDFUZZ. All the ex-
periments are conducted on a server running Ubuntu 18.04
with two 18-core Intel Xeon Gold 6140 CPUs and 256GB
RAM.

We prepare the target states and the seed inputs for the
experiments. We first find the origin of the vulnerability report
and extract the target states. SDFUZZ successfully extracted
the target states for all the cases. We then use SDFUZZ to test
the vulnerabilities for five runs, each with a 24-hour time limit.
For the vulnerabilities in Google’s Fuzzer Test Suite, we use
the seed inputs (if available) provided in the repository; we
use empty seed inputs for other cases.
Required code identification. Our selective instrumentation
technique can significantly reduce the fuzzing scope to the
required code. We first analyze the proportion of the required
code that SDFUZZ identified for the 45 evaluated vulnerabili-
ties. In particular, SDFUZZ eliminated 48.18% of unrequired
functions on average and narrowed down the fuzzing scope
to the other 51.82% of required functions. For several cases
(e.g., #24 in re2), SDFUZZ could even eliminate over 80% of
unrequired functions and trigger the vulnerabilities.
Vulnerability exposure. We measured the time used for ex-
posing the known vulnerabilities and presented the evaluation
results in Table 1. SDFUZZ could reproduce 44 out of the 45
vulnerabilities within the time limit of 24 hours (1,440 min-
utes). This demonstrates the high effectiveness of SDFUZZ
in exposing known vulnerabilities.

6.3 Comparison with Other Approaches
We compared SDFUZZ to existing directed fuzzers on the
same dataset. We thoroughly investigated the literature and
included the state-of-the-art open-sourced directed fuzzers as
the comparison targets: AFLGo [26], WindRanger [7], and
SieveFuzz [32]. Beacon [14] is publicly available in the form
of binary [40]. We additionally used the provided binary and
included it in the comparison. We could not add some other
related works (e.g., Hawkeye [3], CAFL [16]) mainly because
they are not open-sourced. We ran these fuzzers also for five
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Table 1: Vulnerability exposure results. Factor is the ratio of time used by a tool compared to that of SDFUZZ. CE denotes compilation error.
TO denotes that a tool reaches the time limit (timeout) before triggering a vulnerability. The best result of a case is underlined.

ID Program Location
AFLGo WindRanger Beacon SieveFuzz SDFUZZ

Time Factor p-val Time Factor p-val Time Factor p-val Time Factor p-val Time

1 libming decompile.c:349 216 2.45 0.003 195 2.22 0.002 147 1.67 0.001 199 2.26 0.007 88
2 libming decompile.c:398 268 1.71 0.008 348 2.22 0.003 194 1.24 0.050 282 1.80 0.030 157
3 LMS service.c:227 5 1.67 0.009 8 2.67 0.006 3 1.00 0.001 3 1.00 0.001 3
4 mjs mjs.c:13732 272 1.36 0.132 204 1.02 0.012 128 0.64 0.003 228 1.14 0.023 200
5 mjs mjs.c:4908 8 2.67 0.007 5 1.67 0.004 5 1.67 0.006 3 1.00 0.001 3
6 tcpdump print-ppp.c:729 608 4.68 0.004 708 5.45 0.003 CE - - 512 3.94 0.003 130
7 lrzip stream.c:1747 372 18.60 0.005 251 12.55 0.003 38 1.90 0.001 176 8.80 0.003 20
8 lrzip stream.c:1756 329 7.48 0.002 224 5.09 0.001 158 3.59 0.003 137 3.11 0.009 44
9 objdump objdump.c:10875 785 5.38 0.002 752 5.15 0.008 235 1.61 0.003 327 2.24 0.003 146
10 objdump dwarf2.c:3176 TO - - 618 7.92 0.001 CE - - 154 1.97 0.019 78
11 libssh messages.c:1001 TO - - TO - - TO - - TO - - 1,112
12 libxml2 valid.c:952 151 2.44 0.009 42 0.68 0.004 52 0.84 0.003 70 1.13 0.001 62
13 libxml2 messages.c:1001 217 1.43 0.003 209 1.38 0.002 78 0.51 0.003 192 1.26 0.018 152
14 libxml2 parser.c:10666 134 3.35 0.012 211 5.28 0.007 TO - - 78 1.95 0.009 40
15 libarchive format_warc.c:537 TO - - TO - - TO - - TO - - 1,039
16 Little-CMS cmsintrp.c:642 382 2.98 0.003 565 4.41 0.003 229 1.79 0.001 258 2.02 0.004 128
17 boringssl asn1_lib.c:459 511 4.26 0.006 368 3.07 0.004 263 2.19 0.003 346 2.88 0.006 120
18 c-ares ares_create_query.c:196 3 3.00 0.019 3 3.00 0.122 1 1.00 0.151 1 1.00 0.132 1
19 guetzli output_image.cc:398 42 10.50 0.030 51 12.75 0.003 17 4.25 0.004 25 6.25 0.012 4
20 harfbuzz hb-buffer.cc:419 TO - - TO - - TO - - 1,350 2.13 0.001 633
21 json fuzzer-parse_json.cpp:50 8 4.00 0.013 19 9.50 0.003 3 1.50 0.001 5 2.50 0.003 2
22 woff buffer.h:86 519 1.46 0.019 638 1.79 0.003 389 1.09 0.001 443 1.24 0.003 356
23 vorbis codebook.c:479 TO - - TO - - 198 0.78 0.001 TO - - 254
24 re2 nfa.cc:532 1,121 12.18 0.005 654 7.11 0.003 157 1.71 0.001 465 5.05 0.005 92
25 pcre pcre2_match.c:5968 55 4.23 0.001 30 2.31 0.001 8 0.62 0.005 27 2.08 0.005 13
26 tcpdump in_cksum.c:108 369 1.16 0.104 420 1.32 0.040 CE - - CE - - 319
27 tcpdump print-isakmp.c:2502 615 1.21 0.009 502 0.98 0.053 TO - - 419 0.82 0.008 510
28 tiffcp tiffcp.c:1596 551 3.01 0.012 580 3.17 0.064 319 1.74 0.071 611 3.34 0.050 183
29 tiffcp tiffcp.c:1423 TO - - TO - - TO - - 1,284 1.29 0.091 994
30 imginfo jpc_cs.c:316 93 2.21 0.022 172 4.10 0.029 25 0.60 0.032 39 0.93 0.012 42
31 imginfo bmp_dec.c:474 182 1.52 0.010 TO - - 116 0.97 0.012 209 1.74 0.019 120
32 imginfo jas_image.c:378 382 5.23 0.068 273 3.74 0.044 CE - - 193 2.64 0.091 73
33 lame gain_analysis.c:224 91 2.60 0.023 30 0.86 0.033 39 1.11 0.029 58 1.66 0.0.43 35
34 lame mpglib_interface.c:142 911 2.34 0.023 1,029 2.64 0.012 592 1.52 0.084 671 1.72 0.004 390
35 lame get_audio.c:1452 488 1.74 0.043 391 1.39 0.045 276 0.98 0.019 401 1.91 0.029 281
36 mujs jsrun.c:1024 347 1.96 0.003 287 1.62 0.012 591 3.34 0.004 638 3.60 0.004 177
37 mujs jsdump.c:892 694 2.62 0.009 392 1.48 0.018 TO - - 192 0.72 0.008 265
38 mujs jsdump.c:867 605 3.83 0.018 482 3.06 0.014 291 1.84 0.007 263 1.66 0.007 158
39 mujs jsvalue.c:396 TO - - TO - - 1,109 - - 1,284 - - TO
40 libming parser.c:3232 118 1.59 0.059 231 3.12 0.091 45 0.61 0.038 83 1.12 0.036 74
41 libming outputtxt.c:143 372 2.13 0.007 413 2.36 0.009 283 1.62 0.023 309 1.77 0.016 175
42 libming parser.c:3089 439 2.02 0.034 364 1.68 0.019 492 2.27 0.043 284 1.31 0.024 217
43 libtiff tif_dirwrite.c:1901 TO - - 893 1.52 0.041 482 0.82 0.018 693 1.18 0.075 588
44 libtiff tif_read.c:346 TO - - TO - - 1,034 1.39 0.012 920 1.24 0.056 744
45 libtiff tiffcp.c:1386 643 1.45 0.043 325 0.74 0.027 339 0.77 0.019 458 1.03 0.032 443

24-hour runs and reported the average vulnerability exposure
time. Since these works do not use target states, we acknowl-
edge that our comparison with them can hardly be perfectly
fair. Nevertheless, we tried our best to conduct a fair com-
parison by strictly following the instructions provided by the
compared tools, and using the same hardware environments
and initial seeds.

Vulnerability detection. The comparison results are shown
in Table 1. SDFUZZ generally outperformed other di-
rected fuzzers with more vulnerabilities exposed. Specifically,
AFLGo, WindRanger, Beacon, and SieveFuzz exposed 36, 37,
34, and 40 vulnerabilities, respectively. The numbers of the
exposed vulnerabilities are fewer than SDFUZZ’s. Note that
we failed to compile several cases in our evaluation, shown

as CE in Table 1.
We characterize the time each tool used for triggering

the vulnerabilities. SDFUZZ used a shorter time than the
compared directed fuzzers in most of the exposed cases. We
compute a factor value as the ratio of the time used by a
tool to that of SDFUZZ in each case. The factor value de-
scribes the performance speedup between tools. The factor
value is not available (shown as - in Table 1) if a fuzzer
does not trigger the vulnerability. We further compute the
average speedup as the geometric mean of the factor val-
ues for those exposed vulnerabilities (excluding CE and TO
cases).3 In general, SDFUZZ achieved an average speedup of

3Excluding TO cases actually under-approximates the speedup factors
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2.83×, 2.65×, 1.29×, and 1.81× above AFLGo, WindRanger,
Beacon, and SieveFuzz, respectively. SDFUZZ also outper-
formed AFLGo, WindRanger, Beacon, and SieveFuzz by up
to 18.60×, 12.55×, 4.25×, and 8.80×, respectively. The best
result per vulnerability is underlined in Table 1. We observe
that SDFUZZ performed the best in 35 out of the 45 cases
(77.8%), demonstrating the effectiveness of our new tech-
niques.

We further employed a Mann-Whitney U test [22] on vul-
nerability exposure time to measure the statistical significance
of our experiment results. We find that our results are signifi-
cant in the majority of the cases under the significance level of
0.05 (i.e., most cases in Table 1 have a p-value less than 0.05).
Therefore, given the high diversity of the vulnerabilities in our
dataset, we confidently conclude that SDFUZZ could trigger
vulnerabilities more quickly.

We observe that several vulnerabilities were significantly
hard for prior directed fuzzers to trigger, which SDFUZZ suc-
cessfully triggered. For instance, cases #11 and #15 were not
exposed by all other four evaluated directed fuzzers; cases
#20 and #23 were not triggered by three of the other evalu-
ated directed fuzzers. We investigated the source code and the
historical input queue and identified the reason why SDFUZZ
could more easily trigger them. These cases generally have
a significantly large number of paths on the CG from the
entry function to the target function(s). A large proportion of
them is not feasible dynamically due to the unsatisfiable path
constraints. For example, in case #11, a buffer overflow vulner-
ability, other directed fuzzers could not reproduce it within the
time limit. They favored wrong paths and tested this vulnera-
bility in a wrong direction, where the vulnerability-triggering
conditions were hardly achieved. SDFUZZ, however, chose
a feasible path that was more likely to approach the target
state. The analysis suggests that the target states provided
additional guidance, which directed SDFUZZ to trigger the
vulnerabilities, whereas the other fuzzers easily got stuck in
wrong directions.
Code elimination. SieveFuzz [32] uses a code elimination
technique based on target site locations and is open-sourced.
We also investigated how well SieveFuzz eliminated code.
It removed around 31.53% of unrequired code on average,
which is 43.29% less than what SDFUZZ eliminated. This
demonstrates the benefits of the target state information for
code elimination. We were not able to check such statistics
for Beacon [14] since the authors only released its binary, and
we could not enhance it to obtain such internal statistics.
Path pruning and fuzzing throughput. The effectiveness
of path pruning can be reflected in the fuzzing throughput, i.e.,
number of executions per unit time. We find that SDFUZZ
achieved a much higher fuzzing throughput. Since different
programs normally have distinct processing time, we thereby
calculate a throughput factor value as the ratio of the through-

SDFUZZ could achieve.

put of a tool to that of AFLGo in each case. We then compute
the geometric mean on all cases as the average throughput.
On average, SDFUZZ, WindRanger, Beacon, and SieveFuzz
had the throughput factor value of 9.32, 0.93, 1.43, and 8.09,
respectively. This shows that fuzzers employing execution
termination techniques have higher throughput compared to
the ones with only distance metrics. For instance, SDFUZZ,
Beacon, and SieveFuzz had higher throughput than the other
two. Besides, SDFUZZ, driven by target states, achieved the
highest fuzzing throughput in the evaluated vulnerabilities.
This could be explained as its execution termination to also
abort some reachable executions. As for WindRanger, it un-
derperformed AFLGo mainly because of its taint analysis
overhead.
Vulnerability-triggering paths. We found that other fuzzers
mostly triggered the vulnerabilities through the identical paths
that SDFUZZ derived from the target states. Specifically, we
replayed the crashing input that a fuzzer generated to ex-
pose a vulnerability and analyzed the triggered program path.
We then correlated such paths to the ones in the target states.
SDFUZZ triggered the vulnerabilities through these paths. On
the other hand, AFLGo, WindRanger, Beacon, and SieveFuzz
ultimately took the paths in the target states for 28, 20, 25,
and 30 cases, respectively. Such an observation has two impli-
cations. First, SDFUZZ could directly drive the exploration
towards such paths without sparing too much effort on other
paths. This is the root reason why SDFUZZ could have supe-
rior performance compared to other directed fuzzers. Second,
by driving towards the target states, though SDFUZZ could
potentially overlook some other paths, this would not signifi-
cantly undermine the performance of SDFUZZ. Therefore, we
believe SDFUZZ could significantly benefit state-of-the-art
crash reproduction.

6.4 Component-Wise Analysis
We conduct an ablation study on the same dataset to un-
derstand how each technique in SDFUZZ contributes to the
performance. First, to assess the effect of the target states, we
design a variant of SDFUZZ, namely SDFUZZbl , that utilizes
only the bug locations (target sites)—the reduced target states.
We add a variant of SDFUZZ—SDFUZZ−si—by disabling
its selective instrumentation. Additionally, we design four
variants for the component-wise evaluation. Since SDFUZZ
is built atop AFLGo, each variant enables one key tech-
nique over AFLGo. In particular, AFLGO+si, AFLGO+et ,
AFLGO+s f , and AFLGO+d f further enables selective instru-
mentation, execution termination, target state feedback, and
distance feedback, respectively, atop AFLGo.

We use the same experimental setup in §6.2 to run the
variants. We measure the average time used to trigger the
vulnerabilities for successful runs. We show the speedup of
each variant above the baseline tool, AFLGo, in Table 2. We
cannot compute the speedup for several cases when AFLGo
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Table 2: Speedup of vulnerability exposure time above AFLGo. We use ✓ to denote the situation that the variant (or SDFUZZ) triggers the
vulnerability, but the speedup factor is not available because AFLGo does not trigger it.

ID AFLGO+si AFLGO+et AFLGO+s f AFLGO+d f SDFUZZ−si SDFUZZbl SDFUZZ

1 1.16 1.95 1.27 1.08 2.05 1.34 2.45
2 1.00 2.11 2.11 1.34 2.31 1.42 1.71
3 1.25 1.67 1.00 1.00 1.64 TO 1.67
4 1.30 1.17 1.17 1.08 1.19 1.25 1.36
5 2.21 2.00 0.80 1.60 2.55 1.31 2.67
6 1.24 3.22 1.12 1.16 3.78 2.49 4.68
7 2.10 9.79 3.19 2.49 12.18 TO 18.60
8 2.19 3.58 1.39 1.36 2.39 5.18 7.48
9 2.02 2.42 1.54 1.32 4.29 2.12 5.38

10 ✓ ✓ TO TO ✓ TO ✓
11 TO TO TO TO ✓ ✓ ✓
12 1.96 1.94 1.26 1.16 1.94 1.19 2.44
13 1.09 1.15 1.09 1.14 1.35 TO 1.43
14 1.72 1.97 1.12 1.54 1.78 1.28 3.35
15 TO TO TO TO TO TO ✓
16 1.28 1.49 1.07 1.06 2.54 1.24 2.98
17 1.38 4.02 1.94 1.13 3.38 3.71 4.26
18 1.50 1.50 1.39 1.69 2.32 1.98 3.00
19 1.08 1.16 0.78 1.14 3.19 4.29 10.50
20 TO ✓ TO TO ✓ TO ✓
21 1.60 1.33 1.12 1.04 1.64 2.91 4.00
22 1.06 1.30 1.60 1.00 1.13 1.28 1.46
23 TO ✓ TO TO ✓ ✓ ✓
24 6.96 5.66 2.38 2.12 7.49 9.98 12.18
25 1.28 1.90 1.47 1.08 2.58 2.49 4.23
26 1.09 0.95 1.11 1.03 1.13 0.87 1.16
27 1.14 1.19 1.04 1.10 1.03 0.91 1.21
28 2.14 2.73 1.31 1.25 2.41 2.13 3.01
29 TO TO TO TO TO ✓ ✓
30 1.41 1.33 1.31 1.26 1.54 1.92 2.21
31 1.43 1.11 1.24 1.34 1.09 1.21 1.52
32 2.81 4.21 1.71 1.32 4.43 3.37 5.23
33 2.07 1.83 1.29 1.48 1.95 1.87 2.60
34 1.54 1.96 1.20 1.29 2.24 2.18 2.34
35 1.34 1.44 1.32 1.15 1.23 1.72 1.74
36 1.23 1.67 1.29 1.16 1.06 1.27 1.96
37 1.86 2.23 1.21 1.42 2.47 2.17 2.62
38 1.78 2.81 1.49 1.19 2.94 1.28 3.83
39 TO TO TO TO TO TO TO
40 1.32 1.41 1.18 1.09 1.52 1.43 1.59
41 1.54 1.98 1.26 1.05 1.24 1.74 2.13
42 1.76 1.53 1.32 1.15 1.92 1.39 2.02
43 ✓ ✓ ✓ TO ✓ TO ✓
44 TO ✓ TO TO ✓ ✓ ✓
45 1.42 1.36 1.29 1.13 1.19 TO 1.45

Avg. 1.56 1.94 1.32 1.24 2.11 1.87 2.83

or the variant does not trigger the vulnerability, and we use ✓
to denote them. Generally speaking, the results validate the
effectiveness of the four key techniques. We next analyze the
results in detail.

Effect of target states. Target states are the indispensable
factor for SDFUZZ’s superior performance. With only the
bug location—a reduced target state, we could observe a sig-
nificant performance decrease in SDFUZZbl , compared to
the full-fledged SDFUZZ. SDFUZZbl exposed 36 vulnerabili-
ties and SDFUZZbl on average achieved a speedup of 1.87×
above AFLGo. We found that SDFUZZbl could not expose

several vulnerabilities that even AFLGo could do, e.g., #3.
This is because by using only the bug location, SDFUZZbl
could not precisely terminate executions. Besides, it would
sometimes wrongly terminate the executions because it in-
correctly determines the (un)recoverable executions. This
demonstrates the necessity of using target states in our ap-
proach.

Selective instrumentation. AFLGO+si and SDFUZZ share
the same required code identification step. Therefore,
AFLGO+si could eliminate the same proportion of code as
SDFUZZ. We have shown the results in §6.2 that SDFUZZ
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could eliminate 48.18% of unrequired functions on aver-
age, demonstrating its high effectiveness. On the contrary,
SDFUZZ−si would still explore the whole code base.

From Table 2, we found AFLGO+si improved AFLGo by
exposing two additional vulnerabilities and triggered 38 out
of the 45 vulnerabilities in total. AFLGO+si improved the per-
formance of AFLGo, with an average speedup of 1.56× on the
36 vulnerabilities AFLGo exposed. We also found that Sieve-
Fuzz [32] had a similar average performance on vulnerability
exposure time as AFLGO+si even though AFLGO+si elimi-
nated more unrequired code. SieveFuzz also achieved an aver-
age speedup of 1.56× above AFLGo according to the results
in Table 1. The reason is two-fold. First, AFLGO+si sacrifices
a bit performance for fault tolerance by its instrumentation-
based code elimination. Second, SieveFuzz also employs
other techniques such as diversity heuristics that AFLGO+si
currently does not support. Integrating such techniques would
definitely improve our solution.

We further analyze another variant SDFUZZ−si with se-
lective instrumentation disabled atop SDFUZZ. SDFUZZ−si
triggered 43 vulnerabilities and achieved an average speedup
of 2.11×. This further confirms the benefit of the selective
instrumentation technique.
Early termination of executions. The execution termina-
tion technique in AFLGO+et is highly effective. In the 24-
hour experiments on the 45 vulnerabilities, AFLGO+et early
terminated 56.23% of the executions on average. This also
confirms that executions that cannot reach the target states
are widespread in real-world programs. We could not mea-
sure the proportion of terminated executions in Beacon be-
cause it is close-sourced. Besides, AFLGO+et also improved
the fuzzing throughput by 8.71× on average, compared
to AFLGo. In terms of vulnerability exposure, AFLGO+et
triggered five more vulnerabilities than AFLGo, exposing
a total of 41 vulnerabilities. AFLGO+et achieved an aver-
age speedup of 1.94× above AFLGo on the vulnerabilities
AFLGo triggered.
Feedback mechanism. The feedback mechanism guides the
testing to trigger the vulnerabilities. AFLGO+s f triggered
one more vulnerability compared to AFLGo. It also acceler-
ated the vulnerability exposure by 1.32×. The rationale lies
in that AFLGO+s f appropriately spares the testing efforts to
desired paths specified in target states. However, we notice
that AFLGO+s f performed slightly worse than AFLGo in
several cases like #5 and #19. The reason mainly came from
the runtime overhead caused by the program state mainte-
nance. Since the cases are relatively simple to trigger, the
overhead turned to take a significant proportion in the total
used time.

Similarly, the precisely-weighted distance metric feedback
in AFLGO+d f also improved fuzzing effectiveness. Com-
pared to AFLGo, AFLGO+d f achieved an average speedup
of 1.24×. However, we notice that the performance improve-
ment of AFLGO+d f is slightly less significant than that of

Table 3: Vulnerability discovery results.

Program Statically Reported SDFUZZ Validated

libjpeg 46 2
tinyexr 22 1
pugixml 59 1
ffmpeg 32 0

Total 159 4

AFLGO+s f . Our manual analysis found that the target state
feedback could offer more benefits in optimizing the explo-
ration direction compared to the new distance metric.

6.5 New Vulnerability Discovery
We further evaluate the efficacy of SDFUZZ in discovering
new vulnerabilities. In particular, we explore the feasibility
of applying SDFUZZ to automatically validate the analysis
results of SVF [35]. We apply SVF to a set of well-tested ap-
plications that handle or process different types of files, such
as libjpeg [37], tinyexr [36], pugixml [43], and ffmpeg [8].
Some of the applications have been well-tested by the related
tools [7, 26].

We employed the saber checker [35] of SVF to identify
memory leakage and double-free vulnerabilities. In total, SVF
reported 159 suspicious cases, and we leveraged SDFUZZ to
validate them. SVF provided a program flow for each sus-
picious case, which SDFUZZ converted to a target state for
directed fuzzing. Given the large number of cases, we ran
SDFUZZ for 12 hours for each case, resulting in a total CPU
time of around 2,000 hours. To date, SDFUZZ successfully
identified four new vulnerabilities. We have responsibly re-
ported the new vulnerabilities to the vendors and are in the
process of applying for new CVE IDs. Three of the vulnera-
bilities have been acknowledged. The detailed vulnerabilities
can be found in Table 3. Given this, we believe that SDFUZZ
can be applied in practice as a fully automated solution for
vulnerability validation.

To understand the efficacy of target states, we further re-
played the crashing inputs generated by SDFUZZ on the four
vulnerabilities and analyzed the triggered program paths. Our
investigation revealed that the four vulnerabilities were trig-
gered through the exact paths reported by SVF (i.e., paths
derived from the target states). This confirmed that the target
states could help validate the static analysis results.

7 Discussion and Limitations

In this section, we discuss the limitations of SDFUZZ and
future work.
Requirement of target states. SDFUZZ requires target states
from two sources—vulnerability reports and static analysis
results. This requirement can be satisfied in practice as most
of the vulnerability reports provide such target states (§3).
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Even if vulnerability reports are not available, SDFUZZ can
still leverage existing static bug analysis techniques to identify
the target states. Compared to exploring all paths, the paths
in static analysis results often convey the suspicious flows
that better deserve testing. We have already demonstrated the
feasibility in §6.5.

We admit that some application scenarios such as patch
testing might not provide available target states. Our solution
can extract the target states from the vulnerability where the
patch applies by analyzing the vulnerability report. It can also
analyze the patch change logs to identify the target reaching
order [16]. However, it currently cannot directly derive com-
plete target states from only the patch change logs, e.g., find
the problematic program paths in the patches. To mitigate
this problem, one possible direction is to employ advanced
program analysis techniques such as symbolic execution [2,5]
to synthesize feasible target states for a patch. We leave this
as future work.

States other than target states. A downside of our approach
is that it might potentially overlook some valuable paths that
are not included in the target states, only in crash reproduction.
In fact, as shown in our evaluation, SDFUZZ could trigger
the vulnerabilities in a significantly shorter time. This sug-
gests that overlooking other states would not undermine the
performance of SDFUZZ.

We believe driving to target states is a reasonable trade-off
for two reasons. First, infeasible paths for triggering the vul-
nerabilities dominate the program paths [44]. The paths stated
in the target states are preferred working ones. Our solution
would mostly exclude unnecessary exploration and guide the
fuzzer towards these guaranteed working directions. Second,
the paths in target states are likely to be the best or simplest
ones to trigger the vulnerability as they correspond to the first
cases when a vulnerability gets triggered or reported in real
world. Other fuzzers ultimately triggered the vulnerabilities
also through the paths in the target states. This confirms the
rationale of using target states.

In the application scenario of validating static analysis
results, the task of applying directed fuzzing is to test the
reported suspicious flows. Therefore, our strategy of focus-
ing on the target states (suspicious flows) is reasonable for
achieving this goal.

Incomplete call graph. We notice that the call graph might
not be complete because some call targets cannot be stati-
cally inferred using SVF. SDFUZZ might incorrectly assess
the state recovery capability because of wrong path existence
judgment. To mitigate the issue, we can incorporate dynamic
tracing to monitor function invocations, and accordingly add
additional call edges to the call graph. We can also lever-
age other advanced type inference methods to refine the call
graph [18, 19].

8 Related Work

Eliminating unnecessary explorations can improve fuzzing ef-
fectiveness. Beacon [14], SieveFuzz [32], and SelectFuzz [20]
are three typical examples considering the reachability to the
target sites. As we discussed in §2.3, SDFUZZ can further
exclude unnecessary reachable executions that cannot reach
the target states.

The distance metric is also an important factor in di-
rected fuzzing. AFLGo [26] and SemFuzz [41] were the first
lines of research about directed fuzzing. They initially pro-
posed the concept of distance metrics to drive the coverage-
guided fuzzing towards a direction. Hawkeye [3] further used
adjacent-function distance, which considered the number of
times a function is called. ParmeSan [24] directed the test-
ing towards locations with more sanitization checks. Win-
dRanger [7] pointed out that only deviation basic blocks were
necessary for distance computation. MC2 [30] approached
a new randomized search algorithm to optimize the fuzzing
exploration. SDFUZZ differentiates itself from these tools
by considering the target states for triggering vulnerabilities.
Additionally, LOLLY [17] analyzed the execution trace of
a test case after its execution and used that as feedback. Its
analysis was purely offline, i.e., it did not capture the runtime
program behaviors like the calling contexts. It also introduced
heavy overhead in recording the complete execution trace in
every fuzzing trial. SDFUZZ instead selectively monitors the
runtime program states with minimal overhead. CAFL [16]
measured the order dependency among targets—a part of the
target states. SDFUZZ considers a comprehensive set of the
target states for the feedback.

Unlike SDFUZZ, some related works improve DGF from
other angles or apply DGF to other scenarios. FuzzGuard [44]
used deep learning to predict unreachable test cases and fil-
tered them out from the testing. As for binary programs, UA-
Fuzz [23] considered the target reaching order and detected
UAF vulnerabilities; 1dVul [25] analyzed binary patches to
identify one-day vulnerabilities.

9 Conclusion

Directed grey-box fuzzing would often unnecessarily explore
code and paths that cannot trigger the vulnerabilities. In this
paper, we presented SDFUZZ, an efficient directed fuzzer
driven by target states to mitigate this problem. SDFUZZ ex-
cludes unnecessary explorations by eliminating unrequired
code and early terminating executions that cannot reach the
target states. SDFUZZ further employs a two-dimensional
feedback mechanism to proactively guide the testing direc-
tion. Our evaluation results demonstrated that SDFUZZ could
trigger the vulnerabilities faster and outperformed the prior
works. SDFUZZ also discovered four previously unknown
vulnerabilities, proving its practical value in automated vul-
nerability validation.
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