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Abstract

JavaScript engines are a fundamental part of modern browsers, and
many efforts have been invested in testing them to enhance their se-
curity. However, the incorporation of WebAssembly into JavaScript
engines introduces new attack surfaces that have not received suf-
ficient attention. Existing fuzzers for JavaScript engines primarily
focus on JavaScript, neglecting WebAssembly code and its inter-
actions with JavaScript. We introduce MAD-EYE, the first fuzzer
that can test the JavaScript-WebAssembly interaction using a novel
cross-language code fusion technique. Evaluations of MAD-EYE on
V38, SpiderMonkey, and JavaScriptCore detected 21 previously un-
known vulnerabilities, with 20 confirmed and 18 fixed and merged
into mainstream browsers by the developers, who acknowledged
our reports with vulnerability bounties.
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1 Introduction

JavaScript (JS) engines are vital to modern web applications, playing
a crucial role in browser responsiveness and overall user experience.
Given that these engines execute untrusted client-side code from ma-
licious websites, ensuring their security has become a paramount
concern. Over the years, substantial efforts have been dedicated
to testing the security of JavaScript engines. These studies have
primarily focused on identifying vulnerabilities and bugs within
JavaScript engines [24, 30-34, 36, 41, 44, 45, 49], typically by gener-
ating random JavaScript code and analyzing the resulting crashes
or unexpected outputs.

In addition to JavaScript code, WebAssembly (Wasm) code has
emerged as another input for JavaScript engines to facilitate high-
performance applications, introducing new attack vectors that have
yet to be fully addressed. The executions of malicious Wasm code
create opportunities for exploitation, potentially leading to engine
crashes [14] or, in severe cases, remote code execution (RCE) [2, 3].
Our preliminary studies shows that the share of Wasm-related
regression test files in V8 grew from 3% of all regression test files
in 2016 to 16% in 2017, eventually reaching 62.5% in 2024. These
evolving security challenges emphasize the need to integrate the
Wasm input vector into ongoing academic research to strengthen
the security of JavaScript engines.

Recent works have explored generating diverse Wasm code for
testing Wasm runtimes. For instance, Park et al. [40] proposed
a reverse stack-based technique to generate random Wasm code.
Zhao et al. [50] introduced an execution context-aware mutation
approach to enhance Wasm code diversity. Similarly, Cao et al. [26]
disassembled and reassembled real-world Wasm binaries to stress-
test runtimes. In the industry, Google employs an internal Wasm
generator [1] that generates various Wasm opcodes to evaluate
the V8 engine’s compilation and execution processes. While these
approaches effectively test standalone Wasm runtimes, our analysis
indicates that they are ineffective for testing Wasm execution in
the contexts of JavaScript engines.

This work addresses the gap caused by the overlooked Wasm
attack vector in JavaScript engines. In particular, while previous
works have focused on generating standalone Wasm or JavaScript
code, they overlook a critical aspect: the interactions between Wasm
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1 // constructing Wasm module through WasmBuildler

2 load("test/mjsunit/wasm/wasm-module-builder.js");

3 const builder = new WasmModuleBuilder();

4 const structl = builder.addStruct([makeField(kWasmI32,
false)]);

5 const arrayl = builder.addArray(wasmRefNullType (
structl));

6 const segmentl = builder.addPassiveElementSegment ([],
wasmRefNullType(structl));

7 builder.addFunction("drop", kSig_v_v).addBody ([
kNumericPrefix ,kExprElemDrop, segmentl]).
exportFunc();

8 const function_body = [kExprLocalGet,®,kExprLocalGet
,1,kGCPrefix,kExprArrayNewElem,arrayl, segmentl,
kExprLocalGet,2,kGCPrefix ,kExprArrayGet,arrayl,
kGCPrefix ,kExprStructGet,structl,0];

9 builder.addFunction("init_and_get", makeSig([kWasmI32,
kWasmI32,kWasmI32], [kWasmI32])).addBody/(
function_body) .exportFunc();

10

11 // generating JS-Wasm interaction

12 const instance = builder.instantiate();

13 instance.exports.drop();

14 instance.exports.init_and_get(); //JSC segfault here

Listing 1: A null-pointer-dereference vulnerability (CVE-2024-54508)
detected by MaD-EYE in JavaScriptCore.

and JavaScript code, which create a far more complex testing envi-
ronment of JavaScript engine testing. Testing JS-Wasm interactions
is crucial because, while Wasm runs in a sandbox within JavaScript
engines, these interactions can potentially bypass the sandbox,
leading to serious security risks. Listing 1 illustrates a minimized
exploit for a new vulnerability detected by our tool in JavaScript-
Core. In this case, two Wasm functions are exported to JavaScript
code (lines 7 to 9) to be invoked. When the JavaScript code called
exported Wasm functions (lines 13 to 14), the JavaScript engine
crashed during handling interactions with Wasm. Because inter-
nally, the engine assessed a pointer (representing the type of a
Wasm ElementSegment) that was set to nullptr during Wasm code
execution, resulting in a null pointer deference. Note that JavaScript
engines should execute arbitrary code with graceful error handling
instead of crashing, which could lead to a denial-of-service or ex-
pose memory safety issues. This vulnerability is assigned a CVE and
marked as high-severity by Apple developers. Similarly, Listing 3
demonstrates another newly discovered vulnerability by us where
JS-Wasm interactions result in an exploitable type confusion in V8.
It was discovered to be under active exploitation in the wild, and we
were awarded $8,000 for reporting it. These examples illustrate how
JS-Wasm interactions expose attack surfaces that neither language
reveals in isolation. Such issues arise only when the two execution
domains are combined: exporting a Wasm function into JavaScript
forces the engine to bridge two distinct runtime models, translating
Wasm’s low-level representation into JavaScript’s execution envi-
ronment. Any missing checks or misaligned assumptions in this
translation can lead to exploitable conditions. They indicate the
intricate and error-prone nature of handling cross-language interac-
tions, which are both challenging to implement and susceptible to
security flaws. Notably, such vulnerabilities cannot be detected by
existing approaches and further necessitate a new technique that
bridges this gap and generates JS-Wasm interactions in systematic
ways to test JavaScript engines.
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Fusion is a technique that combines multiple code fragments
into a single cohesive program. It shows great promise in testing
graphics shader compilers [47] and SMT solvers [46]. However, to
the best of our knowledge, no prior works have fused two different
languages; instead, they fuse code fragments of programs in one
language [46, 47]. Since major JavaScript engines, including V8,
SpiderMonkey, and JavaScriptCore, execute both JavaScript and
Wasm code, this work proposes the first technique that fuses code
from JS and Wasm, enabling diverse cross-language interactions
within the final program to test JavaScript engines.

Cross-language code fusion introduces several new challenges.
First, while many language generators produce code in a single
language, they do not account for the interfaces needed to call code
written in a different language. As a result, their generated code
cannot be directly used for fusion. To enable JS-Wasm interactions,
the Wasm code’s import and export sections are critical, as they
define the resources required to interact with JS code. However,
no Wasm generators [1, 26, 40, 50] intentionally produce the two
sections. One explanation is that, once the Wasm code includes
an import section, there must be corresponding JS code to define
these imports; otherwise, the Wasm code cannot be compiled. Given
this, generating import and export sections is fundamentally dif-
ferent from generating other Wasm sections, as the generation
strategies for these sections depend on another language. More-
over, the fact that resources defined in one language are not natively
understood in another makes fusion even more challenging. For
instance, instead of simply generating a function and using it later
(the common code generation strategy for testing other compilers
and interpreters), a function defined in Wasm must be explicitly
exported to JS through an export declaration. The JS code must
then correctly interpret the exports object of a Wasm instance to
use the Wasm function.

Besides, there is a lack of knowledge about which JS code is
relevant to Wasm code, making it difficult to effectively generate
JS-Wasm interactions. Existing JS code generators are coverage-
guided and aim to produce diverse code. Directly using them for
JS-Wasm fusion would degrade fuzzing performance by executing
Wasm-irrelevant JS code. This not only reduces efficiency but also
diverts the fuzzer’s focus away from testing Wasm, the relatively
newer attack surface this work aims to test.

This work proposes MAD-EYE, the new tool that employs a cross-
language fusion technique to overcome the above challenges. To
address the first challenge, MAD-EYE aims to target the full spec-
trum of interaction mechanisms through both imports and exports.
For imports, MAD-EYE generates (1) declarations of random Wasm
objects in the import section and (2) random Wasm code to use
imported objects based on their types. For exports, MAD-EYE ran-
domly selects objects from other sections and places them in the
export section. When mutating Wasm code, MAD-EYE adheres to JS,
Wasm, and JS-Wasm constraints to improve program validity. To
bridge the cross-language gap, we introduce a probing technique on
the generated Wasm code to extract information about Wasm im-
ports and exports (e.g., the exported object names and types). With
these probed imports and exports, MAD-EYE generates JavaScript
code in a guided manner to address the second challenge. Specifi-
cally, MAD-EYE introduces dedicated code generators to properly
create and manipulate Wasm objects in JavaScript. To improve the
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efficiency of testing vulnerabilities caused by JS-Wasm interactions,
Mabp-EYE employs Variable-Guided Code Generation, which priori-
tizes correctly typed Wasm objects over other variables. MAD-EYE
also refines type constraints by considering object shapes rather
than broader type categories (i.e., object of Wasm objects).

We evaluate MAD-EYE on three major JavaScript engines: V8,
SpiderMonkey, and JavaScriptCore. While these engines have been
extensively tested by prior works and industry fuzzers, MAD-EYE
found 21 previously unknown security vulnerabilities: nine in V8,
four in SpiderMonkey, and eight in JavaScriptCore. 19 were re-
lated to the Wasm features and 16 were caused by direct JS-Wasm
interactions, highlighting the need for testing this previously over-
looked attack vector. As of this writing, developers have confirmed
20 of our reported vulnerabilities, of which 18 have been fixed.
Our ablation studies show that generating JS-Wasm interactions
improves not only code coverage but also vulnerability discovery.
To compare MAD-EYE with state-of-the-art tools, we evaluate ex-
isting works RGFuzz [40], Fuzzilli [31], WASMaker [26], and V8’s
Wasm generator [1]. MAD-EYE demonstrates the best performance
in Wasm-related code coverage and vulnerability discovery.

In summary, this work has the following contributions:

o We identified previously overlooked attack vectors imposed by the
execution of WebAssembly code in JavaScript engines. To the
best of our knowledge, we designed the first cross-language code
fusion technique for generating JS-Wasm programs to detect
vulnerabilities in JavaScript engines.

e We implemented all techniques in a tool called MAD-EYE, which
is open-source and available at https://github.com/HKU-System-
Security-Lab/Mad-Eye.

e MAD-EYE detected 21 vulnerabilities across three major
JavaScript engines; 20 have been confirmed, and 18 have been
fixed by the browser developers; 3 CVE IDs have been assigned.

2 BackGround

2.1 Wasm in JavaScript Engines

In this subsection, we explain how Wasm operates within JavaScript
engines, how Wasm is represented through WasmBuilder APIs, and
how Wasm interacts with JavaScript code.

2.1.1 Execution of Wasm Code. The process of creating and exe-
cuting Wasm code involves several stages:

e Source Code to Wasm Bytecode: There are two approaches
to generating Wasm bytecode. The first uses compilers for
high-level programming languages. For instance, Emscripten
[6] translates C/C++ code into Wasm bytecode. The second uti-
lizes V8’s WasmBuilder, which produces Wasm bytecode through
programmatic construction (detailed in §2.1.2). We use the sec-
ond approach, as we use Wasm regression tests written in
WasmBuilder as the initial fuzzing corpus.

o Wasm Bytecode to Native Code: A .wasm module is executed
by a Wasm runtime embedded within the JS engine. The runtime
validates the module, compiles it into native machine code, and
then executes it.

2.1.2  WasmBuilder. V8 introduces the WasmBuilder library [19]
to create Wasm modules in JavaScript. The WasmBuilder consists
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of various APIs to programmatically construct Wasm bytecode.
Since WasmBuilder allows JS engines to construct and execute
Wasm modules, it is also widely used in JS engines beyond V8.
For instance, Wasm regression tests [16-18] in V8, SpiderMonkey,
and JavaScriptCore are manually written by the JavaScript engine
developers in the format of WasmBuilder API calls.

In Listing 2, lines 2-11 is an example of constructing a Wasm
module via WasmBuilder APIs. The equivalent WebAssembly-Text
(WAT) format of this WasmBuilder program is shown in lines 13-23.
The program first loads the WasmBuilder library (line 2) and con-
structs a builder instance (line 3). From lines 4 to 11, it calls different
WasmBuilder APIs to assemble a Wasm module. The API’s imple-
mentation is defined in line 1, where it emits Wasm bytecode based
on the provided API arguments. The bytecode is then passed to wasm.
Module() in line 24 for compilation. For example, addImportedGlobal ()
in line 4 emits bytecode that appends a declaration of a Global object
env: :var to the import section.

2.1.3  JavaScript-Wasm Interactions. We define JavaScript-Wasm
interactions in JavaScript engines as the mechanism through which
JavaScript code calls Wasm code and vice versa. Note that Wasm-
Builder APIs are not considered as part of these interactions. Wasm-
Builder APIs emit a sequence of binary data (which is interpreted
as meaningful bytecode by Wasm runtime), but they do not provide
a mechanism for invocation between JavaScript and Wasm code.

JavaScript and Wasm interact as follows: JavaScript can create ob-
jects to be imported into and used by Wasm modules (imports); and
Wasm modules can export Wasm objects (exports) into JavaScript
code for access. There are five types of objects, including Table
(used to store references to Wasm functions for dynamic dispatch),
Memory (used for managing linear Wasm memory), Global (used as
global variables in Wasm), Tag (used for structured exception han-
dling) and regular Wasm/JavaScript Function. They can be defined
within a Wasm module as internal objects and (optionally) exported
to JavaScript, or can also be defined by JavaScript through the Wasm
JavaScript APIs [22] (e.g., new Wasm.Global()) and imported into a
Wasm module.

We use the code in Listing 2 as an example. In line 24, the Wasm
bytecode, generated by builder.toBuffer() and comprising sections
such as type, import, and function, is passed to the wasm.Module()
constructor for compilation. The compiled module is subsequently
instantiated in line 28 using the Wasm.Instance() constructor, en-
abling its execution and interaction with JavaScript. Wasm modules
with imported objects must declare these dependencies in their im-
port section. The JavaScript environment is responsible for defining
these imports (line 26) and linking them during instantiation (lines
27-28). Additionally, imported objects can be directly manipulated
within JavaScript, as demonstrated in line 29. Exported objects,
declared in the module’s export section, are made accessible in the
JavaScript environment via the exports property of the instantiated
wasmInstance. For example, line 30 demonstrates how an exported
Wasm function is invoked by the JavaScript code.

2.2 Threat Model and Existing Works

In this subsection, we present our threat model and the motivations
of this work.
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1 // WasmBuilder APIs
load('test/mjsunit/wasm/wasm-module-builder.js'); // a
library provided by V8.

N

3 const builder = new WasmModuleBuilder();

4 builder.addImportedGlobal('env', 'var', kWasmI32);
5 builder.addFunction('add', kSig_i_i)

6 .addBody ([

7 kExprLocalGet, O,

8 kExprGlobalGet, O,

9 kExprI32Add

10 D

11 .exportFunc();

12 /* its equivalent WAT format

13 (module

14 (type (func (param i32) (result i32)))

15 (import "env" "var" (global i32)) ;; import section
16 (func $add (type 0) (param i32) (result i32)

17 local.get © Load the first parameter
18 global.get 0O ;3 Use imports

19 i32.add ;3 Add them

20 )

21 (export "add" (func $add)) ;; export section
22 )

23 */

24 let module = WebAssembly.Module(builder.toBuffer());

25 // JavaScript interactions

26 let glob = new WebAssembly.Global({value: 'i32"',
mutable: true});

27 let imports = {env: {var: glob}};

28 const wasmInstance = new WebAssembly.Instance(module,
imports);

29 glob.value = 10;

30 wasmInstance.exports.add(3); // Use exports

Listing 2: An example of a WasmBuilder program, its equivalent
WAT format, and its interaction with JavaScript code.

2.2.1 Threat Model. We focus on generating a mix of JS and Wasm
code to trigger vulnerabilities in JavaScript engines. We assume that
both JS and Wasm code are untrusted. This is a valid assumption,
considering that JS engines inside browsers execute such code from
potentially malicious websites.

Our goal is to uncover vulnerabilities arising from Wasm code
executions within JS engines. We test Wasm features in JS engines
because they are relatively new, and JS-Wasm interactions remain
unexplored in prior research. Crashes in JS engines can expose
underlying vulnerabilities that may be exploited in subsequent
attacks [13, 27]. Many fuzzers of JS engines [24, 30-34, 36, 41, 44,
45, 49], include V8’s internal fuzzer [31], use crashes as indicators
of vulnerabilities. Following this line of research, our objective is
to generate code that intentionally causes JS engines to crash upon
execution. In doing so, we challenge the design philosophy that
JavaScript engines should not crash when executing arbitrary code.

2.2.2 New Attack Vectors in JavaScript Engines. Detecting vul-
nerabilities in JavaScript engines has been a major focus of re-
search. Prior works proposed various strategies to generate random
JavaScript code [31, 41, 45]. Some works also generate Wasm code
[1, 26, 40, 50], which can be fed into JavaScript engines as inputs.
This work differs from all prior research by addressing a gap:
earlier studies focused on generating JS or Wasm code to uncover
vulnerabilities but overlooked attack vectors arising from the interac-
tions between JS and Wasm. For example, JS engines can execute
code where JS code calls Wasm functions. When the calling context
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Wasm Generator Defining Wasm objects
Global . Tag for Imports
* Memory « Function +
Table . .
—* Variable-Guided JS
Exports/Imports Generation
Probing +
Constrained Mutation Object-Shane 8
Generation

Figure 1: The workflow of MAD-EYE.

switches, it is likely to suffer from the classical and highly ex-
ploitable type confusion vulnerabilities. As our evaluation confirms,
improper type conversions between JS and Wasm can introduce
severe security risks (see §5). Additionally, Wasm and JS code can
operate on shared resources, such as Table that contains raw point-
ers. Whether JavaScript engines correctly handle these sensitive
resources is also an area that is worth testing.

3 Design

In this section, we present MAD-EYE, a tool that generates two-
dimensional, interdependent inputs, i.e., JavaScript and Wasm code,
to test JavaScript engines. To generate diverse, valid, and interactive
JS-Wasm programs, several challenges must be addressed. First,
there exists a fundamental language gap between JavaScript and
Wasm. The two languages adopt different type systems: JavaScript
is dynamically typed, while Wasm enforces strict static typing. As
a result, their interaction requires carefully designed interfaces
through special types of objects. Existing Wasm code generators do
not account for these interfaces and fail to produce programs that
exercise JS-Wasm interactions. Second, while modern JavaScript
fuzzers are effective at exploring large code spaces, they are typ-
ically coverage-guided in a generic manner and lack dedicated
mechanisms to target JS-Wasm interaction. As a result, they tend
to produce large quantities of Wasm-irrelevant code that do not
contribute meaningfully to testing the attack surface we focus on.

To address them, MAD-EYE emphasizes principles of generating
and mutating the full spectrum of interaction mechanisms between
JavaScript and Wasm, including imports, exports, and object ma-
nipulations. To achieve this, we first design a Wasm generator that
comprehensively supports interactive objects, as described in §3.2.1.
On the JavaScript side, we then generate code that is aware of these
objects and capable of invoking them correctly, enabled by prob-
ing-based discovery and type-aware construction strategies (§3.3).
To further ensure both diversity and semantic validity, MAD-EYE
employs principled mutation strategies on both languages: con-
strained mutation for Wasm that respects semantic rules (§3.2.2),
and guided generation of JavaScript code that prioritizes Wasm-
relevant interactions (§3.3.2).

3.1 Overview

The overall workflow of MAD-EYE is illustrated in Figure 1. At a high
level, it first generates Wasm code and then constructs JavaScript
code to interact with it. We adopt this generation order because
JavaScript offers a vast array of features. Without a predefined
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Algorithm 1: Map-EveE Workflow

1 Input: Corpus C, Fuzzer ¥, Mutators M
while #.NorStorpED do

3 if probability(0.5) then

4 ‘ P < WASMGENERATOR()

5 else
6 L P « C.SELECT()

7 O < PRrROBE(P) ;

)

// extract Wasm metadata

8 for i « 1 to Rounds do

9 m < RaNDoMPIcK(M)
10 P «— m.MuTtaTE(P, O)
1 F < EXECUTE(P)

12 C.CHECKSAVE(P, F)

Wasm code, it is challenging to determine which JavaScript con-
structs will effectively trigger and test Wasm-related functionali-
ties. Therefore, MAD-EYE begins with a wasm-generator to generate
Wasm modules enriched with interactive objects to be imported and
exported. wasm-generator supports all available types for imports
and exports (Global, Memory, Table, Tag, and Function), ensuring the
presence of interaction interfaces for JavaScript. Then, Wasm mod-
ules are mutated under semantic constraints to preserve validity
while increasing diversity. Next, MAD-EYE probes the Wasm module
to extract metadata about imports and exports, which bridges the
language gap and serves as guidance for subsequent JavaScript gen-
eration. Guided by this metadata, JavaScript code is generated that
meaningfully defines and manipulates Wasm objects. Specifically,
we design Variable-Guided Generation to prioritize the use of Wasm
objects and Object-Shape Aware Code Generation, which leverages a
fine-grained type system to improve generation accuracy.

To implement this workflow, we integrate it into a grey-box
fuzzing loop (formalized in Algorithm 1) based on Fuzzilli [7],
which is widely used in academia and industry. It starts from ei-
ther selecting a previously saved program in the corpus or calling
wasm-generator to generate a new one (lines 2 to 7). Next, MAD-EYE
applies rounds of mutation through a set of mutators, including the
ones we designed and others from Fuzzilli. In each round, MAD-EYE
randomly selects a mutator and applies it to the program while
being aware of the probed Wasm metadata (lines 8 to 11). The
resulting program is then executed in the target engine with Wasm-
related coverage fed back into the fuzzer; programs that trigger
new coverage are saved in the corpus for further mutation (lines 12
to 13). We also leverage vulnerability oracles from existing works,
i.e, MAD-EYE considers inputs that trigger crashes in JS engines as
evidence of vulnerabilities.

3.2 Wasm Code Generation

We describe the generation strategy of JS-interactive Wasm code.

3.2.1 Generating JS-Interactive Wasm Code. There are some meth-
ods to generate random Wasm code for testing [1, 26, 40, 50]. How-
ever, they are insufficient because, to the best of our knowledge,
none of the existing tools can generate Wasm code that is inten-
tionally interactive with JS. To address these limitations, we design
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a wasm-generator that can generate Wasm code equipped with
diverse objects (§2.1.3) to interact with JS code.

JavaScript and Wasm interact through imported and exported
objects, which are declared in the import and export sections of
Wasm, respectively. For imports, wasm-generator randomly gener-
ates declarations of Global, Memory, Table, Tag, and Function objects
in the import section. Once generated, wasm-generator produces
random Wasm code to access or modify these objects based on
their types. These objects, declared in Wasm’s import section and
defined in JS code, allow Wasm code to interact with resources
from the JS code. Notably, imported objects are treated the same as
internal Wasm objects when being consumed in Wasm code. For
instance, if an i32 type variable is needed, an i32 Global variable
may be selected to access, regardless of whether it’s declared in the
import section or defined in the internal global section.

For exports, however, objects declared in the export section must
also be declared or defined in the other corresponding sections of
the Wasm module. For instance, to export a Global object from
Wasm to JavaScript, it must be defined in the internal global sec-
tion in the Wasm module. Alternatively, it can also be declared in
the import section and accessed like any other export, indicating
the object is imported from and re-exported to JavaScript. After
generating the import and internal sections, wasm-generator ran-
domly selects some objects to place in the export section. To use
these exports, the JavaScript code must understand their details, as
described in §3.3.1.

3.2.2 Constrained Mutation for Wasm. MAD-EYE mutates Wasm-
Builder APIs to combine code from different sources, including
the generated code and a collected corpus (e.g., Wasm regression
tests), to include vulnerability-triggering patterns. Among various
language mutation methods [10], we utilize only splicing, which
incorporates patterns between inputs while being less likely to
invalidate the Wasm module compared to other random mutators.
Splicing involves copying a self-contained part of one program
into another to combine features from different programs. Self-
contained programs are those that are complete in both control
flows and data flows and do not require external code to function. To
achieve this, we randomly select a statement and perform backward
data-flow analysis to identify the necessary statements for forming
a valid splice. After that, we place the spliced program in a selected
position in another program. We address the following constraints
in accordance with JavaScript and Wasm execution rules:
Complying with JS Constraints. As WasmBuilder APIs are in JS,
they must adhere to JS execution rules. First, we avoid splicing any
duplicate load() statement as this violate JS execution rules. Besides,
we place the spliced code after the 1oad() statement. This is because
WasmBuilder APIs are defined within "wasm-module-builder.js" file
and can only be accessed after it has been loaded.
Complying with Wasm Constraints. A JS program calls
WasmModuleBuilder() to instantiate builders before invoking Wasm-
Builder APIs. As each initial program has instantiated a
WasmModuleBuilder(), we avoid including wasmModuleBuilder() in the
splice again. However, this can be problematic if other statements
in the splice depend on the return values of wasmModuleBuilder(). To
address this, we remap all builder uses in the splice to the builder
used in the splice-host program.
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Besides, we always include the addBody() method in the splice
whenever splicing the addFunction() method. Lines 5-6 in Listing 2
show an example. WasmBuilder APIs provide the addFunction()
method to declare function names and parameters, and the addBody
method to specify the function body. Omitting the addBody () method
while adding addFunction() will result in a Wasm compilation error.

Complying with Imports/Exports Constraints. Wasm modules
place the declarations of imported objects in the import section,
which precedes the sections for internal objects. Therefore, Wasm-
Builder APIs that declare imported objects (e.g., addImportedGlobal())
will throw exceptions if called after APIs that declare internal ob-
jects (e.g., addGlobal()). These errors can easily be introduced during
splicing. To mitigate this, we modify the WasmBuilder library to
skip incorrect imports instead of throwing exceptions that halt code
execution. This is a trade-off between diversity and validity, since it
could compose more diverse inputs but might invalidate the Wasm
module during its compilation.

Using exports requires them to be defined. Existing data-flow
analysis cannot map export usages (line 30 in Listing 2) to their
definitions (lines 5-11) because they have no explicit data-flow. To
address this, we add all exports’ definitions to the splice during
backward traversal. Besides, duplicated export definitions would
cause exceptions in the WasmBuilder. We avoid this error by us-
ing the combination of the export name (e.g., add()) and type (e.g.,
Function) to identify and skip duplicates.

3.3 JavaScript Code Generation for Interaction

In addition to Wasm generation, MAD-EYE also generates JavaScript
code that influences Wasm code executions. This includes JS code
that uses Wasm objects or JS code that is imported into Wasm. JS
code has diverse structures and complex input spaces, which can
be used to trigger intricate interaction behaviors with Wasm.
Since there are many JS code generators, we build our JS code
generator upon an existing generator, Fuzzilli [7]. MAD-EYE lever-
ages it because Fuzzilli is actively maintained by Google. However,
it is a new challenge to generate JS code that is both diverse and
relevant to Wasm features for detecting more Wasm vulnerabilities.
Simply using Fuzzilli would cause significant distraction as it is
coverage-guided rather than focusing on the new attack vector, i.e.,
Wasm. To address this issue, we propose the following strategies to
guide MAD-EYE in generating and mutating JavaScript code.

3.3.1 Discovering Wasm Objects and Types. JavaScript must know
the names and types of imported/exported Wasm objects before
they can be used. This presents a challenge due to the cross-
language nature, as objects defined in Wasm/JavaScript are not
natively presented and understood by JavaScript/Wasm. To ad-
dress these issues, we employ an instrumentation-based approach
named probing. We implement a Probe() utility that instruments a
JavaScript built-in Object.getOwnPropertyNames() call on an object to
extract its property names and types.

Probing Exports. MAD-EYE uses the utility on the exports property
of objects in WebAssembly . Instance (e.g., wasmInstance.exports in List-
ing 2). This enumerates the names and types of all exported Wasm
resources, as they are only accessed through the exports property.
In addition to probing exports, this process is recursively applied
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to previously probed objects (e.g., wasmInstance.exports.mem). The
dynamically retrieved names and types are sent back to MAD-EYE,
enabling it to generate JS code utilizing exported resources.

Probing Imports. Besides exports, imports are defined in JS code
using the Wasm JavaScript APIs (e.g., WebAssembly.Global in List-
ing 2) and are used by the Wasm module to access JS resources. To
identify potential variables representing imported Wasm objects,
MaD-EYE conducts a data-flow analysis starting from WebAssembly.
It probes the WebAssembly object’s properties, which include those
imported as arguments to the WebAssembly.Instance() constructor.
For example, in the code Snippet "v1=WebAssembly; v2=v1.Table; v3
=new v2()", MAD-EYE identifies v3 as a potential object imported
to Wasm. It then probes v3 to identify the available methods (e.g.,
set()) that can be invoked to manipulate imported resources.

3.3.2 Guided JS Code Generation. With these probed exported/im-
ported resources, MAD-EYE generates JavaScript code in a guided
manner to test Wasm attack surfaces in JS engines.

Defining Wasm objects for Imports. Map-EYE introduces
new code generators to create Wasm objects (e.g., new WebAssembly.
Memory()) through WebAssembly JavaScript API [22]. After wasm-
generator generates a Wasm module that declares imported objects,
Map-EYE ensures that the objects are defined properly in JS code
(e.g., the initial size of a WebAssembly.Memory object defined in JS code
should be greater than or equal to the Memory object’s initial size
declared in Wasm). During Wasm module instantiation, the objects
are then properly linked into the module.

Variable-Guided Code Generation. MAD-EYE guides the code
generators to produce JavaScript code interacting with Wasm mod-
ules. The implementation of its code generators involves two main
components: 1) generating variables, which may include both prim-
itive and composite data types, and 2) generating code or variables
of composite types that leverage the previously generated variables.
MaD-E¥YE first discovers (the discovery method is detailed in §3.3.1),
generates, and records available Wasm object variables in step 1.
During step 2, MAD-EYE prioritizes selecting Wasm objects over
other variables to increase the likelihood of JS-Wasm interactions.
For example, when generating new JavaScript object definitions or
function calls, MAD-EYE prioritizes the selection of Wasm objects
as their elements, arguments, or callees.

Object-Shape Aware Code Generation. MAD-EYE extends exist-
ing type systems to enable more precise construction of JavaScript
code interacting with Wasm. Existing works perform type analysis
to select variables for mutation and substitute variables of the same
broad type (e.g., number, function) [31, 37, 41]. This coarse-grained
approach is insufficient for targeting Wasm, as it does not differen-
tiate the unique structures and properties of objects. Addressing
this limitation is important for testing Wasm attack surfaces as JS
and Wasm interact through Wasm objects.

To address this, MAD-EYE tracks fine-grained type information
by maintaining the shapes of Wasm objects [8]. (the shape of the
Wasm object is probed in §3.3.1) For instance, WebAssembly.Table
objects have properties such as get, set, etc. WebAssembly.Memory ob-
jects have properties like grow, etc. Randomly substituting these
objects without considering their shapes will lead to errors such as
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incorrect method calls, etc. MAD-EYE identifies objects with match-
ing shapes as having the fine-grained same type. In this way, the
JavaScript code generators and mutators can operate in a more
accurate manner, such as substituting Wasm objects in the same
shape to avoid invalid Wasm module compilation.

The above strategies facilitates complex and effective JS-Wasm
interactions, resulting in the following effects:

o Interacting with Wasm Objects: MAD-EYE generates JavaScript
code with diverse structures and constructs to manipulate Wasm
objects. For example, it can place Wasm objects in generated
JavaScript loops, triggering the JavaScript JIT optimizers to en-
able their interactions with the Wasm execution.

o Generating JavaScript Functions for Interaction: Functions im-
ported to Wasm modules can have arbitrary code structures.
Guided by Wasm variables, MAD-EYE generates interesting code
patterns such as harnessing Wasm objects inside a JavaScript
function that is later imported into the Wasm module, testing
the interoperability between JavaScript and Wasm.

o Interleaving Mutation within JavaScript Generators: JavaScript
code mutation is interleaved into generators, enabling complex
constructions of both WasmBuilder and JavaScript regions. For
example, a JavaScript loop generated in a WasmBuilder region
could wrap a WasmBuilder API call, resulting in repeated API
invocations to modify the Wasm module.

Avoiding Side-Effects of JavaScript Generation. MaD-EYE
leverages existing JS code generators [7] to facilitate extensive and
complex interactions with Wasm objects. However, the generators
may not always generate Wasm-related JS code. Since MAD-EYE
is coverage-guided, it may be affected by coverage noise from ex-
ecuting irrelevant JS code. To mitigate this, we focus exclusively
on Wasm coverage within JS engines. This directs the mutations
and fuzzing efforts towards exploring Wasm features without in-
terference from irrelevant JS code [39]. Details on identifying these
Wasm implementations are provided in §4.

4 Implementation

Map-EYE is open-sourced at https://github.com/HKU-System-
Security-Lab/Mad-Eye. It is implemented on top of Fuzzilli, with
2,717 new or modified lines of Swift code. wasm-generator is im-
plemented with 1,177 new or modified lines of C++ code, based on
V8’s Wasm generator and the WasmBuilder disassembler [1]. We
discuss some important implementation details below.

Partial Instrumentation. Since JavaScript engines are large, con-
ventional coverage-guided fuzzing can easily be diverted from test-
ing the Wasm part of the engine. To address this, we only instrument
the Wasm-related code in the JavaScript engines to guide MAD-EYE.
Specifically, we manually inspect the engines’ source code structure
and identify files related to Wasm by checking if the folder or file
names contain "wasm" or "WebAssembly". We then modify the build
system configurations of each engine to enable coverage feedback
instrumentation exclusively for these files. While not all Wasm-
related features may be implemented in the files we instrument, we
believe that the coverage provides a reliable indicator of the com-
prehensiveness of Wasm testing. The proportion of instrumented
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code blocks relative to the total code blocks in V8, SpiderMonkey,
and JavaScriptCore are 7.33%, 9.34%, and 8.32%, respectively.

Engine-Specific Customizations. We adjust the code genera-
tion strategies to adapt to the engine-specific Wasm support. First,
JavaScriptCore supports only a single memory section (either im-
ported or internal) per Wasm module, while V8 and SpiderMon-
key allow multiple memory sections. Therefore, MAD-EYE only
generates one Memory when fuzzing JavaScriptCore. Second, the
JavaScript built-in functions that can be imported into a Wasm
module vary across engines. Specifically, V8 and SpiderMonkey
support JavaScript string built-in functions, whereas JavaScriptCore
does not. More differences in Wasm support across JS engines are
described in [15]. To improve the correctness, MAD-EYE accounts
for these engine-specific differences when creating fuzzing inputs.

5 Evaluation
In the evaluation, we answer three research questions:

e RQ1: Is MAD-EYE effective at identifying vulnerabilities caused
by Wasm executions in JS engines?

e RQ2: How does MAD-EYE compare to existing approaches?

e RQ3: How does each component in MAD-EYE contribute to its
performance of code coverage and vulnerability detection?

5.1 RQ1: Performance of MAD-EYE

We evaluate MAD-EYE’s capabilities in detecting vulnerabilities in
JavaScript engines.

5.1.1 Settings. We first introduce our experimental settings.

Target Engines. We selected V8, SpiderMonkey, and JavaScript-
Core as our fuzzing targets, as these are the JavaScript engines
powering mainstream browsers, including Chrome, Firefox, Safari,
and Internet Explorer. We employed the partial instrumentation
strategy (detailed in §4) to build the JavaScript engines, ran different
fuzzers on them, and computed the coverage ratio by measuring
the covered code relative to the total instrumented code in all ex-
periments, including ablation and comparative studies. We built the
three engines in their debug and fuzzing modes, using the devel-
oping versions available at the time of experiments! and the same
command-line flags as Fuzzilli [31]. We also evaluated ablated tools
and other works on these versions with the same compilation flags,
unless otherwise specified.

Environments. We ran MAD-EYE on each engine for 90 CPU days
to detect vulnerabilities, which is reasonable as prior studies also
required several CPU-months or even CPU-years to uncover vulner-
abilities in JavaScript engines [28, 40, 41, 45]. All experiments were
conducted on a server with Intel Xeon Platinum 8450H processors
and 1TB RAM. V8 and SpiderMonkey provide simulators that allow
simulating non-x86_64 architectures on our x86_64 machine. We
used them to test these two engines on other architectures (i.e.,
arm64, mips64, riscv64, loong64). However, unless specifically men-
tioned otherwise, we conducted the ablation and comparative study
on x86_64. In all experiments, we use the Wasm regression tests

The exact commit versions of the target engines are as follows:
V8: 9422b80f49d7bb206a5d0795dc55472c6b17b161
SpiderMonkey: 4e69784010d271c0fce0927442e4f8e66ffe645b
JavaScriptCore: 1a9adbce1d3fbd78795e86aad2c57ce384e31168
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1 load('test/mjsunit/wasm/wasm-module-builder.js');

2 const builder = new WasmModuleBuilder();

3 const type = builder.nextTypeIndex();

4 builder.addType(makeSig([], [wasmRefType(type)]));

5 const func = builder.addFunction('func', type);

6 func.addBody ([kExprRefFunc, func.index]) .exportFunc();
7 const instance = builder.instantiate();

8 // JS-Wasm interactions

9 instance.exports.func(Q);

10 const v200 = instance.exports.func();

11 v200.toString(); // V8 crashes due to type confusion

Listing 3: A type confusion vulnerability in V8.

provided in JavaScript engine repositories [16—18] as the initial
fuzzing corpus, if required by the fuzzers.

5.1.2  Results. We present the vulnerability detection results of
Map-EYE in Table 1. After deduplication, MAD-EYE identified 9, 4,
and 8 previously unknown vulnerabilities in V8, SpiderMonkey, and
JavaScriptCore, respectively. As shown in the "Vul. Type" column,
15 vulnerabilities were caused by the interactions between JS and
Wasm, while 4 were triggered during the compilation of Wasm. 7
vulnerabilities were linked to Debug check failures, which we use
to reveal the causes of these issues. However, all vulnerabilities are
reproducible in the stable releases of the engines. Some vulnerabili-
ties were caused by assertion failures. Although assertions are
typically placed in code to catch illegal cases during development,
they can be considered security-relevant, as they can indicate mem-
ory errors before the assertion or lead to denial-of-service attacks.
For instance, Apple assigned CVE-2025-24162 to one of them (#16).
While all these vulnerabilities result in crashes in JavaScript en-
gines, their security implications vary. Among them, #1-#2, #7-#9,
#10, #14-#18 are marked as high-severity, while the remaining are
considered lower priority. The first factor influencing severity is the
phases of error. Vulnerabilities in the Wasm module compilation
are less critical than those triggered during the execution of Wasm
modules in JavaScript (i.e., the JS-Wasm vulnerability type) because
the latter are usually easier to achieve exploitation [4, 21]. The
second factor is the relevance to real-world scenarios. For exam-
ple, V8 and SpiderMonkey developers prioritize vulnerabilities in
core components over architecture-specific issues. As of writing,
developers have confirmed 20 vulnerabilities and fixed 18.

5.1.3 A Case Study. We discuss a new vulnerability detected by
Mabp-EYE to showcase its efficiency. Listing 3 demonstrates a mini-
mized PoC for a type confusion vulnerability in V8. This vulnera-
bility was marked as high severity (CVE-2024-12053) and we were
awarded 8,000 USD for reporting it. The Wasm module defines a
recursive type and a self-referential function func, which is then
exported to JavaScript. When JavaScript invokes the exported func-
tion, the engine must wrap the Wasm function in a JavaScript
callable object. At this boundary, V8 applies its tier-up mechanism:
the first call (line 10) executes an interpreter-level wrapper, while a
subsequent call (line 11) triggers tier-up to a compiled wrapper for
performance. The flaw resided in V8’s type canonicalizer, which
incorrectly calculates type indexes in recursion groups. During
tier-up, it embedded an inconsistent type index into a JavaScript
function object. As a result, the method call in line 12 assessed
an incorrectly typed object and crashed. The root cause lies in
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the translation between diverse Wasm and JavaScript types and
objects during cross-language tier-up. It illustrates why JS-Wasm
interaction is a risky attack surface, since every boundary crossing
requires careful translation that introduces opportunities for subtle
type and memory safety errors.

In MAD-EYE, the guided JS generation is the crucial step to re-
veal this vulnerability, especially compared to existing works. As
described before, function calls in lines 11 and 12 are necessary to
trigger vulnerable code in tier-up and expose the crash, respectively.
To construct this PoC, MAD-EYE first generated the Wasm module
either via wasm-generator or splicing from existing corpus (§3.2.2),
and then probed the module to discover exported function func.
Through probed information, MAD-EYE extensively explored JS-
Wasm interaction, such as invoking discovered functions repeatedly.
Furthermore, MAD-EYE would manipulate related objects through
JavaScript mutators, such as objects exported by Wasm or returned
by Wasm functions (line 12), to finally reveal this vulnerability.

5.2 RQ2: Comparison with Other Works

While MaD-EYE is effective at detecting new vulnerabilities, its
quantitative performance compared to state-of-the-art tools re-
mains uncertain. To address RQ2, we evaluate MAD-EYE against
other state-of-the-art tools, including RGFuzz [40] and WASMaker
[26], which, to the best of our knowledge, are the most recent and
advanced approaches for generating Wasm code. We also compare
Map-EYE with the state-of-the-art JavaScript generator Fuzzilli [31]
using the Wasm regression tests [16—-18] that MAD-EYE uses. We
exclude Wapplique [50] because it is not open-sourced.

5.2.1 Comparions with RGFuzz. RGFuzz generates diverse Wasm
code to test Wasm runtimes. We conducted two experiments to
compare with RGFuzz: the first evaluates whether RGFuzz can
identify vulnerabilities in the versions tested by MAD-EYE, and the
second evaluates whether MAD-EYE can uncover vulnerabilities
detected by RGFuzz in the JavaScript engine versions it tested. For
our comparison, we allocated 90 CPU days of fuzzing time per
engine, per architecture, for both RGFuzz and Mad-Eye.

Testing Latest-Version Engines. We tested the JavaScript en-
gines on the x86_64 architecture using the versions that MAD-EYE
evaluated. The coverage data for MAD-EYE and RGFuzz is shown in
Table 3, with their code block coverage trends presented in Figure 2.
The coverage of RGFuzz is clearly lower than that of MAaD-EYE. We
attribute this to two main factors: First, RGFuzz employs a purely
generative approach without incorporating initial fuzzing corpus.
Second, RGFuzz does not use coverage feedback. As a result, its
coverage trend remains rather flat after an initial increase.

RGFuzz did not detect any vulnerabilities in our evaluation,
which aligns with its previous evaluation, where it failed to de-
tect vulnerabilities in V8, SpiderMonkey, and JavaScriptCore on
x86_64 architecture after 15 CPU months of testing. In contrast,
MAaD-EYE detected 17 new vulnerabilities on x86_64.

Testing Old-Version Engines. We extended our testing of
JavaScript engines to three additional architectures—MIPS64, RISC-
V32, and RISC-V64—where RGFuzz identified the highest number
of new vulnerabilities in its evaluated version [11]. This evalua-
tion focused solely on V8 because we were unable to successfully
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Table 1: Unique, previously unknown vulnerabilities identified by \sys.

# JS Issue ID Architecture Type Status Descriptions
1 V8 378779897 x86_64 JS-Wasm Fixed Illigal write due to overwritting ‘GetMemOp' operand register
2 V38 379009132 x86_64 JS-Wasm Fixed Type confusion due to leaking relative types from canonicalizer
3 V8 388685477 x86_64 JS-Wasm Fixed Mass instruction selection inputs lead to de-optimization crash
4 V8 379052295 x86_64 JS-Wasm Fixed Miss checks of shared element types
5 V8 397043084 x86_64 JS-Wasm Fixed Miss checks of instruction selector in Turboshaft compilation
6 V8 381917890 armé64 JS-Wasm Fixed Debug check failure when simulating JS stack overflow
7 V38 380604249 mips64 JS-Wasm Fixed Wrong register conflict check
8 V38 381325002 mips64 JS-Wasm Confirmed Unsupported JavaScript Promise Integration APIs
9 V8 380618369 riscve4 JS-Wasm Confirmed Debug check failure in assembler-riscv.cc
10 SpiderMonkey 1931471 x86_64 JS-Wasm Fixed Miss serialization check when importing builtin functions
11 SpiderMonkey 1938742 loong64 Wasm Fixed Register allocation conflicts in LIR and atomic operations
12 SpiderMonkey 1938744 mips64 JS Fixed Assertion failure in Simulator-mips64.cpp
13 SpiderMonkey 1933148 loong64 JS Fixed Assertion failure in WarpOracle.cpp
14 JavaScriptCore 283398 x86_64 JS-Wasm Fixed Null pointer dereference in WasmOperationsInlines.h
15 JavaScriptCore 284159 x86_64 JS-Wasm Fixed Tail calls should consume expression stack after call in BBQ
16 JavaScriptCore 283261 x86_64 JS-Wasm Fixed Miss validation of functions/exceptions signature when parsing types
17 JavaScriptCore 285065 x86_64 JS-Wasm Fixed WASM GC Objects should have null prototype
18 JavaScriptCore 284627 x86_64 Wasm Fixed Miss ‘exnref* type handling
19 JavaScriptCore 284161 x86_64 Wasm Fixed FuncRefTable should accept JSNull when set from initElementSegment
20 JavaScriptCore 284873 x86_64 Wasm Fixed Assertion failure in WasmTypeDefinitionInlines.h
21 JavaScriptCore 283280 x86_64 JS-Wasm Reported Assertion failure in WasmBBQJIT.cpp
V8 SpiderMonkey JavaScriptCore
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Figure 2: Code block coverage trend of other works and Map-EYE.

Table 2: The number of vulnerabilities detected by ablated tools,
other works, and MaDp-EYE in JavaScript engines on the x86_64 ar-
chitecture after 90 CPU days of fuzzing. The numbers in parentheses
represent numbers of previously unknown vulnerabilities.

‘ V8  SpiderMonkey JavaScriptCore

wasm-generator” | 1 (1) 0 2(2)

Ablated tools | MAaDp-EvE-UNncoN | 1 (1) 0 2(2)

Map-Eve-Jcon | 1(1) 0 3(3)

Map-EveE-WcoN | 2(2) 1(1) 8 (6)
RGFuzz 0 0 0

Other works WASMaker 0 0 1(1)

Fuzzilli 0 0 5 (5)

Mabp-EYE | 64 1(1) 10 (9)

Mad-Eye  RGFuzz Mad-Eye 1 RGFuzz  Mad-Eye RGFuzz
0 1 2 6 6 10 0
RISCV32 RISCV64 MIPS64

Figure 3: The numbers of bugs found by RGFuzz and Map-EYE in
the V8 version tested by RGFuzz.

build SpiderMonkey for MIPS64, RISC-V32, and RISC-V64 using

the versions in the RGFuzz’s repository. Additionally, RGFuzz did
not detect any vulnerabilities in JavaScriptCore in its evaluation.

The detected vulnerabilities are summarized in Figure 3. Some
vulnerabilities span multiple architectures and are counted individ-
ually for each architecture in Figure 3. In total, MAD-EYE identifies
18 vulnerabilities, 17 of which are not detected by RGFuzz, while
RGFuzz identifies 7 vulnerabilities, 6 of which are not detected
by Map-EYE. Of the 17 vulnerabilities missed by RGFuzz, 14 in-
volve JavaScript-Wasm interactions, and 3 are pure Wasm compila-
tion issues. RGFuzz identified 6 vulnerabilities that MaD-EYE did
not find. They are all Wasm compilation issues. Note that RGFuzz
only detects vulnerabilities in architecture-specific code generators,
demonstrating weaker real-world impact compared to MAD-EYE,
which identifies vulnerabilities in core Wasm components.

5.2.2 Comparions with WASMaker. WASMaker [26] is another
fuzzer that generates Wasm code by disassembling and reassem-
bling Wasm binaries. Since it does not report vulnerabilities in
JavaScript engines in its evaluation, we only compare WASMaker
and MAD-EYE on the JavaScript engine versions tested by MAD-EYE.

As shown in Figure 2, WASMaker achieves the lowest coverage
among the four tools. For vulnerability detection, in Table 2, WAS-
Maker identified one assertion failure in JavaScriptCore, which was
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also detected by MAD-EYE. In other words, MAD-EYE discovered 16
more vulnerabilities than WASMaker across the three JavaScript
engines on x86_64 architecture.

5.2.3 Comparions with Fuzzilli. Since WasmBuilder APIs are in
JavaScript, the initial corpus used by MAD-EYE consists entirely
of JavaScript files. We run Fuzzilli to evaluate whether existing
JavaScript engine fuzzers can discover vulnerabilities by mutating
Map-EYE’s initial corpus. From Figure 2, Fuzzilli achieves relatively
high code coverage, ranking second after MAD-EYE. Incorporating
Wasm regressions [16—-18] demonstrates better Wasm coverage than
existing generative Wasm fuzzers during 90 CPU-day fuzzing. In Ta-
ble 2, Fuzzilli identified five reachable assertions in JavaScriptCore,
while MAD-EYE detected these five and 12 additional vulnerabilities.
These results confirm that although Fuzzilli can generate Wasm
and JavaScript code, it is less effective at producing new PoCs.

5.3 RQ3: Ablation Study

In this subsection, we evaluate the effectiveness of MAD-EYE’s com-
ponents in detecting vulnerabilities, using the same experimental
setup described in §5.1.1. We additionally measure code coverage for
the ablated tools and MAD-EYE using Clang’s source-based cover-
age [12]. As mentioned, all experiments were conducted on partially
instrumented JS engines and use the same initial corpus as in §5.1.

MaDp-EYE comprises the following components for ablation: a
wasm-generator, a constrained Wasm mutator, and a guided JS code
generator. The guided JS code generator includes several interde-
pendent techniques, i.e., the probing strategy used for variable-
guided and shape-aware JS code generation. Due to their strong
interdependency, we do not separately evaluate their impacts. As
MaD-EYE uses wasm-generator to generate Wasm code, we use
wasm-generator” as the baseline, which preserves its generaliza-
tion to test different engines while ablating the generations of
imports and exports interaction interfaces. We then implement
four prototypes: MAD-EYE-UNCON, which conducts unconstrained
Wasm mutation and random JavaScript generation upon wasm-
generator™; MAD-EYE-JcoN, which only enables guided JS code
generation upon MaD-EYE-UNCcON; MAD-EYE-WcoN, which only
enables constrained Wasm mutation upon MAD-EYE-UNCON; and
Map-EYE, which enables all components.

Vulnerability Discovery. Table 2 shows the unique vulnerabili-
ties found by the ablated tool and MAD-EYE. These include: 1) the
previously unknown vulnerabilities listed in Table 1 (their num-
bers are noted in parentheses in Table 2); and 2) those triggered in
the versions tested by MAD-EYE or the ablated tools, but no longer
reproducible in the versions at the time of our reporting. We in-
fer that the latter were patched by the vendors concurrently and,
therefore, do not classify them as "previously unknown" in Table 1.
Nevertheless, the total vulnerabilities demonstrate the vulnerability
detection capabilities of each tool.

The results show that MAap-Eye-uNcon finds the same num-
ber of vulnerabilities as wasm-generator*. MAD-EYE-JcoN performs
slightly better than MAD-EYE-UNCON by discovering one more vul-
nerability. MAD-EYE-WcoN identifies seven additional vulnerabili-
ties than MAD-EYE-UNCON by leveraging the constrained mutation
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on Wasm code. Through guided JS code generation, MAD-EYE out-
performs MAD-EYE-WcoN by detecting six more vulnerabilities, all
related to JavaScript-Wasm interactions.

Coverage. The trends in code block coverage are presented in
Figure 4, with the final coverage data detailed in Table 3. wasm-
generator” has the lowest coverage among the three engines.
Map-EYE-uNcoN and MAD-EYE-JcoN show similar coverage be-
cause, without constrained Wasm mutation, the JavaScript muta-
tors can easily invalidate the Wasm module. It results in guided
JavaScript generation having little effect since the Wasm module
cannot be executed. MAD-EYE and MAD-EYE-WcoN show the high-
est coverage levels. They have similar coverage because we mea-
sured the Wasm-related coverage in the engines, while guided
JavaScript generation does not produce new Wasm code. However,
JavaScript code generation for JS-Wasm interaction is crucial for
revealing vulnerabilities as illustrated in Table 2 and §5.1.3.

We further analyzed the source-based coverage results of the
instrumented files. The primary reasons for the unexecuted code
are: 1) JIT optimizer (e.g., TurboFan) for Wasm shows relatively low
coverage as MAD-EYE is not explicitly designed to target the JIT,
and 2) header files contain much code but often show low coverage.
Exploring Wasm-JIT interactions is left for future work.

6 Discussion

Prior works [38, 48] analyze cross-language programs (e.g., Rust-
C, FFL, JS-native extensions) to identify their memory-safety bugs.
MAaD-EYE instead tests the underlying execution engine (written in
C++) that runs such programs by generating cross-language inter-
actions as fuzzing inputs. In this work, we test V8, SpiderMonkey,
and JavaScriptCore, as they are the JavaScript engines embedded in
mainstream browsers that execute untrusted JavaScript and Wasm
code from potentially malicious websites. MAD-EYE can test other
JavaScript engines. For instance, ChakraCore provides preliminary
support for Wasm, and our experiments indicate it also has new
security vulnerabilities related to Wasm. We do not include Chakra-
Core in the evaluation as it is no longer maintained or used by any
mainstream browsers. Standalone JavaScript engines such as Jer-
ryScript [9] and Duktape [5], as well as standalone Wasm runtimes
like Wasmtime [20], fall outside our scope since they currently lack
support for JS-Wasm interactions.

Besides, Wasm modules can interact with each other by import-
ing and exporting objects. These interactions may also introduce
security risks. Currently, MAD-EYE generates one Wasm module per
test case and does not handle inter-module linkage for interactions,
therefore missing potential vulnerabilities in those interactions.
Additionally, vulnerabilities unrelated to Wasm features have been
extensively tested and are outside the scope of this work.

7 Related Work

Fuzzing JavaScript Engines. JavaScript engines are frequent
targets for attacks. Finding vulnerabilities in JavaScript engines has
been a significant focus of academic research. Researchers generate
JavaScript code in various ways, including mutation approaches like
AFL [41], deep learning [37], reinforcement learning [30], language
or graph-based IRs [31, 49], or generative approaches based on
grammars [23, 42, 43] or IRs [28, 31]. The industry also actively
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Table 3: Coverage data of ablated tools and other works. The data represents the percentage of code blocks (regions), lines, functions, or
branches covered relative to the total instrumented code.

V8 SpiderMonkey JavaScriptCore
Region  Line  Function Branch | Region  Line Function Branch | Region Line Function Branch
wasm-generator® | 36.75% 47.16%  39.29% 32.85% | 51.86% 64.46% 51.87% 48.18% | 51.3%  62.61% 58.37% 47.57%
Ablation MAD-EYE-UNCON | 46.61% 58.01%  51.46% 42.74% | 59.14% 73.82% 60.49% 55.49% | 58.72%  70.22% 67.05% 53.77%
MAD-EYE-JcoNn 47.03% 58.43%  52.08% 43.07% | 59.16%  73.8% 60.52% 55.56% | 59.82% 71.28% 69.0% 55.06%
MaD-EvE-WconN | 49.28% 59.93% 54.9% 46.61% | 65.8%  77.74% 68.02% 65.61% | 63.72%  74.52% 72.34% 59.25%
RGFuzz 29.77%  41.29% 30.5% 24.85% | 35.65% 48.74% 34.16% 30.97% | 32.45% 39.37% 35.63% 30.42%
Comparison WASMaker 10.4%  21.42%  13.58% 8.68% | 26.67%  37.63% 24.69% 24.03% | 17.67%  19.52% 14.75% 15.88%
Fuzzilli 45.22% 56.57%  50.02% 41.93% | 64.29% 75.57% 66.14% 63.75% | 60.32%  67.47% 63.06% 54.77%
MAD-EYE 48.96%  60.1% 54.81% 46.39% | 66.3% 78.03% 68.48% 66.18% | 64.72% 75.76% 74.29%  60.46%
V8 SpiderMonkey JavaScriptCore
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Figure 4: Code block coverage trend of ablated tools and Map-EYE.

tests JavaScript engines. For example, Google operates Fuzzilli for
testing V8 and other engines [7]. Recently, most of these efforts have
focused on the JIT component using differential techniques [24, 30,
31, 34, 36, 44, 45], which check output consistency before and after
JIT optimizations. Favocado [29] also tests cross-language issues
through JavaScript bindings by generating JavaScript programs to
invoke interfaces implemented in C++. Prior work has successfully
reported vulnerabilities that cause crashes or unexpected outputs.
In contrast to these approaches, MAD-EYE identifies vulnera-
bilities in JavaScript through new attack vectors introduced by
WebAssembly. It shows the importance of triggering vulnerabilities
through alternative input dimensions in language interpreters.

Wasm Runtime Security. Some works focus on detecting vul-
nerabilities or bugs in Wasm runtimes. RGFuzz [40] implements a
generative approach to detect crashes and semantic bugs in Wasm
runtimes. WASMaker [26] collects and mutates real-world Wasm
bytecode to conduct differential testing on Wasm runtimes. Wap-
plique [50] performs similar differential testing using an execution
context-aware bytecode mutation. These works primarily detect
semantic bugs in standalone Wasm runtimes, whereas MAD-EYE
identifies security vulnerabilities caused by JS-Wasm interactions.
Other works propose methods to protect Wasm runtimes. Johnson
et al.[35] propose a verifiably sandbox that maintains access isola-
tion for the host OS’s storage and network resources. Bosamiya et
al.[25] propose two approaches to producing provably sandboxed
Wasm code to prevent sandbox-compromising vulnerabilities in
Wasm runtimes. These efforts mostly focus on standalone Wasm
runtimes (e.g., Wasmtime). An interesting direction would be to
integrate defense mechanisms within the JavaScript engine context.

Cross-language Testing. There are vairous research works also
focusing on cross-language targets. For example, Favocado [29]

tests JavaScript binding layers (written in C++) by generating JS
code. PolyFuzz [38] proposes holistic greybox fuzzing with cross-
language coverage for C/Python/Java stacks at the application level.
Atlas [48] attempts an automated fuzzing framework for closed-
source native libraries on Android. It performs cross-language anal-
ysis for Java bytecodes and native C/C++ libraries to test the native
APIs. Compared to them, which primarily focus on detecting vul-
nerabilities in code itself written in multiple languages, MAD-EYE
targets the engines that execute cross-language programs.

8 Conclusion

In this paper, we introduce MAD-EYE, the first fuzzer designed to
systematically test the execution of both JavaScript and WebAssem-
bly code within JavaScript engines. Unlike previous approaches that
generate JavaScript or Wasm code independently, MAD-EYE gener-
ates both types of code in an interdependent manner. To achieve
this, we propose a novel cross-language code fusion technique that
generates diverse cross-language interactions to test vulnerabilities
in JavaScript engines. Our evaluation across V8, SpiderMonkey,
and JavaScriptCore identified 21 previously unknown vulnerabili-
ties, 20 of which have been confirmed, and 18 have already been
fixed by browser vendors. Notably, compared to related works,
MaD-EYE can achieve higher code coverage on Wasm and discover
vulnerabilities that other fuzzers fail to detect.
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