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Abstract

Machine learning model repositories, such as the Hugging Face
Model Hub, facilitate model exchanges. However, bad actors can
deliver malware through compromised models. Existing defenses,
such as safer model formats, restrictive (but inflexible) loading
policies, and model scanners, have shortcomings: 44.9% of popu-
lar models on Hugging Face still use the insecure pickle format,
15% of these cannot be loaded by restrictive loading policies, and
model scanners have both false positives and false negatives. Pickle
remains the de facto standard for model exchange, and the ML
community lacks a tool that offers transparent safe loading.

We present PickleBall to help machine learning engineers
load pickle-based models safely. PickleBall statically analyzes
the source code of machine learning libraries and computes custom
policies that specify a safe load-time behavior for benign models.
It then dynamically enforces these policies during load time as a
drop-in replacement for the pickle module. PickleBall generates
policies that correctly load 79.8% of benign pickle-based models
in our dataset, while rejecting all (100%) malicious examples in
the same dataset. In comparison, evaluated model scanners fail to
identify known malicious models, and the state-of-the-art loader
loads 22% fewer benign models than PickleBall. PickleBall re-
moves the threat of arbitrary function invocation from malicious
pickle-based models, raising the bar for attackers as they have to
depend on code reuse techniques.
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1 Introduction

Open-source and open-weight models enable the AI ecosystem [26,
39, 52, 98]. They allow machine learning engineers to exchange pre-
trained models rather than training from scratch [29], facilitating
direct use or fine-tuning [14]. Openmodel repositories like Hugging
Face now hostmillions of pre-trainedmodels formany tasks [50, 52].
These model hubs are accessed directly as well as through corporate
mirrors [107], with billions of downloads per month.

Similar to traditional software supply-chain attacks, bad actors
can distribute malicious models. The most common strategy for
achieving remote code execution is tampering with the model de-
serialization process. Several model serialization formats, such as
TorchScript [78], H5/HDF5 [90], and the Python pickle module [75],
permit executable metadata or callbacks during model deserializa-
tion. Attackers can craft malicious serialized models to execute
code, such as os.system(), on victim systems during model load-
ing [12, 16, 23, 100]. Researchers have foundmalicious picklemodels
on Hugging Face whose payloads include system fingerprinting,
credential theft, and reverse shells [16, 100, 107], with one study
discovering a 5× increase in the rate of malicious models uploaded
to Hugging Face year-over-year [107].
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This led to alternative safe model formats like SafeTensors [42],
and restricted loading APIs like the PyTorch weights-only unpick-
ler [79]; we study their adoption in the Hugging Face ecosystem
(§3) and find that nevertheless, insecure formats are still prevalent.

In this work, we propose a novel approach to secure pickle model
deserialization, which we focus on for three reasons. First, pickle
is a popular exchange format for models. Repositories with pickle
models are downloaded over 2.1 billion times per month from the
Hugging Face model hub (§3.1). Second, pickle is the most expres-
sive format and thus is challenging to secure. Models are encoded as
opcodes that are executed by the pickle virtual machine [40, 67] dur-
ing deserialization, which permits invocations of arbitrary Python
classes and functions (callables). Third, pickle is abused by attackers.
Almost all malicious models on Hugging Face use the pickle format.

Our evaluation shows that the two existing kinds of pickle dese-
rialization defenses are inadequate. Model scanners [7, 12, 41, 107]
maintain fixed denylists of disallowed callables to identify models
that invoke them. Safe model loaders [79] use fixed allowlists to
permit only the use of trusted callables. Our evaluation shows the
limits of these inflexible approaches for ML models. For instance,
the default safe deserialization loader in PyTorch [79] prevents 15%
of Hugging Face pickle repositories from loading (§3.1).

To address these limitations, we present PickleBall, a two-
part system for securing the exchange of pickle-based models. Our
insight is that we can analyze library code to determine the expected
behaviors of benign models produced by the library, and enforce
tailored model loading policies. PickleBall statically analyzes the
library code to learn (1) all class types used in the library’s models
and their transitive attribute types, and (2) all functions needed to
restore objects of these types. Then, PickleBall’s model-loading
component enforces the inferred policies.

We evaluated PickleBall and the state-of-the-art approaches on
a dataset of 336 models. Our dataset is meant to represent the kinds
of models that PickleBall must handle, including malicious and
benign models. We used 252 benign models sourced from Hugging
Face, and 84 real and synthetic malicious models. PickleBall loads
79.8% of benign models and prevents all malicious models from
executing their payloads. PickleBall adds a runtime overhead
of ∼2.62% to safely load a model. Compared to other approaches,
PickleBall achieved favorable precision and recall.

In summary, we contribute:
(1) An ecosystem-scale study of pickle security considerations

in the Hugging Face Model Hub. Repositories with only pickle
models are downloaded over 400 million times per month, de-
spite the introduction of new model formats. We find that 15%
of repositories with only pickle models have a model that can-
not be loaded by the SOTA secure pickle model loader, the
weights-only unpickler.

(2) The design and implementation of PickleBall, a frame-
work for securely loading pickle models. PickleBall tailors
loading policies to models, and enforces these policies lazily,
for secure, efficient, and robust model loading.1

(3) A novel dataset of 336 benign and malicious pickle-based
models for evaluating pickle security efforts. It has 252 benign
models collected from Hugging Face, and 84 malicious models.

1PickleBall is available at https://github.com/columbia/pickleball.

2 Background

Here we describe the ML model reuse ecosystem and formats (§2.1),
then how the pickle format is used and the risks it entails (§2.2).

2.1 Model Reuse

2.1.1 The Model Supply Chain. Training models from scratch re-
quires significant resources [29, 72], so engineers and companies
reuse machine-learning models trained by others (pre-trained mod-
els) [26, 39, 52, 98]. Open model repositories like Hugging Face host
over 1.8M models [44] for many tasks [50, 52].

A supply chain of pre-trained models has grown from model
reuse, which comes with risks similar to those in the traditional
software supply chain [52, 68]. Bad actors apply techniques familiar
in traditional software security, such as typosquatting [48, 49, 58,
65] and code injection [99], as well as ML-specific techniques like
model and data manipulation [38]. Model hubs like Hugging Face
try to detect malicious models using both traditional code scanners
like ClamAV [52] and domain-specific pickle scanners [7, 41] due
to the proliferation of malicious pickle models [12, 107].

Machine learning libraries facilitate the development and ex-
change of models. Libraries like PyTorch [70], TensorFlow [6], and
JAX [10] provide a core of general ML library utilities, like model
training and serialization functions. Other popular but more specific
libraries build upon the core libraries with task-specific utilities,
like ultralytics (formerly YOLO) [96] for image recognition, PyAn-
note [74] for audio processing, and flair [66] for text processing.
To create a model, an engineer uses one of these libraries to write
a model saver program, which trains a model and serializes it for
reuse. To load and use the model, an engineer uses the same li-
brary (identified in documentation that accompanies the model) to
write a model loader program. The libraries provide the interface
for interacting with the shared models.

2.1.2 Model Serialization Formats. Model savers and loaders must
agree on the serialization format; there are various formats avail-
able, each with its own tradeoffs in terms of security, flexibility,
and performance.2 Python is the primary language for using ML
models, and its native serialization module, pickle [75], provides
a convenient and flexible interface for saving objects; pickle pro-
liferated for being easy to use and is used by popular libraries like
PyTorch [77]. Hugging Face released the SafeTensors format in
September 2022 as an alternative that prioritizes security [42]. The
GGUF format, released August 2023, is optimized for fast model
loading and inference tasks, especially for large language mod-
els [36, 43]. Other formats may be selected for library coupling
(e.g., TensorFlow SavedModel), interoperability (e.g., ONNX), or in-
termediate tradeoffs between security, flexibility, and performance.

The security of a format depends on the expressivity of its op-
erations. The SafeTensors format requires very few different op-
erations to load a model, because it only encodes model weight
values, and is considered a secure format after independent security
audits [71, 91]. Some formats, like TensorFlow SavedModel and
ONNX, are known to permit operations that could be abused in
specific settings [92, 108], but with no observed real-world attacks.

2A table showing these tradeoffs is provided in the SafeTensors repository README:
https://github.com/huggingface/safetensors.

https://github.com/columbia/pickleball
https://github.com/huggingface/safetensors
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1 import pickle
2
3 def read_weights_to_tensor(filename: str) -> Tensor:
4 # Read a file containing weights and
5 # return a Tensor object.
6
7 class Tensor(object):
8 ...
9 def __reduce__(self):
10 return (read_weights_to_tensor, (self.filename,))
11
12 class Model(object):
13 def __init__(self, weights: library.Tensor):
14 self.weights = weights
15
16 def save(self, filename):
17 with open(filename, ’wb’) as fd:
18 pickle.dump(self, fd)
19
20 @classmethod
21 def load(cls, path):
22 with open(path, ’rb’) as fd:
23 return pickle.load(fd)
24 ...

Figure 1: Example of a machine learning library with a

model that can be pickled. The Tensor class’s __reduce__

method registers the read_weights_to_tensor function

for execution during deserialization.

Pickle is an extremely expressive format that permits nearly ar-
bitrary operations during deserialization, and numerous malicious
pickle models are discovered on Hugging Face [12, 16, 100, 104, 107].
We focus our efforts on pickle models due to their insecure format
(cf. §2.2) and their continued popularity (cf. §3).

2.2 Pickle Serialization and Risks

Pickle is popular because of its flexibility and convenience, due
to its ability to represent almost any Python object. The pickle
module implements a virtual machine, the Pickle Machine (PM),
that executes a sequence of opcodes [53] to deserialize an object.
The expressiveness of the PM allows it to serialize and reconstruct
complex Python data structures, but also make it vulnerable to
attacks, allowing attackers to invoke arbitrary Python callables [67].
Pickle Program Structure and Semantics: A pickle program
consists of opcode sequences interpreted by the PM, a stack-based
VM implemented in the Python pickle module [67].When the pickle
program halts, the object at the top of the PM stack is returned to
the Python interpreter as the deserialized object.

The PM is integrated into the Python interpreter. Many of the
PM’s opcodes create or manipulate native-type objects, e.g., NEW-
FALSE to create a bool, while others import and invoke Python
callables (classes and functions) [76]. Specifically, the callable im-
porting opcodes GLOBAL and STACK_GLOBAL take a callable’s name,
import it, and push it to the top of the PM stack. Class instances are
instantiated using callable allocating opcodes, like NEWOBJ, which
calls the class’s __new__ method. Function references are called
via callable invoking opcodes like REDUCE. Arguments can be passed
to both allocations and invocations, and the return value is pushed

to the PM stack. Lastly, the callable building BUILD opcode can mod-
ify an object (e.g., set/change its attributes). Pickle lets users cus-
tomize the deserialization process with the __reduce__ method.

The method must return a reference to a function and argu-
ments. During serialization, an object’s __reduce__ method is
called and the returned function reference and argument values
are written to the serialized output opcodes. During deserialization,
the function is invoked with the arguments, and the return value
is pushed onto the PM stack. This provides a primitive to invoke
arbitrary functions in a pickle program. Figure 1 shows an example
class that registers a handler function (line 10) that is invoked with
a callable invoking opcode during deserialization.
Pickle Deserialization Attacks: Pickle’s opcodes allow a pickle
program to import and invoke arbitrary Python callables during
unpickling. An attacker can use of pickle’s callable importing and
callable invoking opcodes to achieve arbitrary code execution—for
example by executing an arbitrary shell command by invoking the
os.system function. The dangers of deserializing arbitrary pickle
programs have been publicized since 2011 [17, 30, 67, 75].
Protecting Pickle Models: Two existing approaches are used to
protect users from malicious pickle models:
(1) Model scanners identify malicious models using denylists

of unsafe callables. As with many denylist approaches, model
scanners are useful for identifying recognizable malicious con-
tent, but are bypassed by malicious models that avoid denied
callables, or that indirectly invoke callables [94].3 Examples are
Hugging Face’s picklescan [41] and ProtectAI’s scanner [73].

(2) Restricted loaders restrict the PM to execute only allowed,
safe callables. The only available restricted pickle model loader
is PyTorch’s weights-only unpickler [79]. Its default allowlist is
specialized for models produced by PyTorch.

3 Motivation

To summarize Section 2: it is dangerous to load untrusted pickle
models, but alternative secure formats exist. Do pickle models re-
main a security threat? We answer this with a longitudinal study
of pickle model usage (§3.1), and assessments of the usability of the
PyTorch weights-only unpickler (§3.2),

3.1 Study of Pickle Models on Hugging Face

To determine whether pickle models are used despite the availabil-
ity of alternate formats, we conducted a longitudinal study of the
Hugging Face ecosystem. We investigated Hugging Face because it
is the largest repository of pre-trained models [52], and because it
hosts malicious pickle models [12, 16, 100, 104, 107]. At 10 points
in time over a ∼2-year period, we measured the download rates
and model formats in repositories with ≥ 1000 monthly downloads
(as a proxy for real-world impact).4 The number of repositories in a
measurement ranged from 2,296 in the first measurement to 16,661
in the last, with the number increasing monotonically at each point.
We mined two existing datasets that covered January–October 2023

3We demonstrate this by creating two backdoored models that bypass two state-of-
the-art scanners. One model uses callables that are missed by the scanners, and the
other model uses disallowed callables by invoking them indirectly. See Appendix B of
our extended report [54].
4Downloads are tracked using Hugging Face metrics.

https://huggingface.co/docs/hub/en/models-download-stats
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Figure 2: A longitudinal analysis of Hugging Face model

formats for repositories with ≥ 1000 monthly downloads.

Repositories can contain multiple models, each in different

formats. Each color groups repositories by themodel formats

they contain: at least one pickle model (green), exclusively

pickle (red), and exclusively SafeTensors (blue).

0 20 40 60 80 100
Percentage (%)

GGUF

SafeTensors Only

Pickle
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33.9%

26.6% 18.3% 44.9%

5.0%

12.7%

19.1% 61.4% 80.5%

Proportion of Models
Proportion of Downloads
Pickle + ST
Pickle Only

Figure 3: Proportions of model formats and downloads in

March 2025, the final month of our longitudinal study. Nota-

tion: “Pickle+ST” indicates repositories with both formats.

(PTMTorrent [51] and HFCommunity [8]), and added new mea-
surements in August 2024, November 2024, and March 2025 via the
huggingface_hub API. In accordance with previous research [107],
we determined model formats using file extensions; interested read-
ers can refer to Appendix A of our extended report [54] for details.

Figure 2 summarizes our results. First, the red lines show that
many important models continue to use only the pickle format, and
these pickle-only models are downloaded 400M+ times per month.
The green lines show that repositories containing both pickle and
SafeTensors versions of models are also increasingly downloaded,
with 1.70 billion monthly downloads. When models are converted
to the SafeTensors format, the associated pickle model is often kept
for legacy purposes and can still present security risks [61].

Figure 3 represents present-day usage with data from the final
month of our study. Repositories with only SafeTensors or GGUF
models are downloaded infrequently, in comparison to those with
pickle models. Overall,∼44.9% of repositories contain pickle models,
which aligns with previous estimates of 41%–55% [12, 107].

We anticipate that pickle models will continue to pose risks
to the Hugging Face community for the next few years (cf. §7).
Monthly download rates of pickle models are increasing, and many
(21%) models are still exclusively in the pickle format, including
29 models in the top-100 most downloaded and over 500 models
from Meta, Google, Microsoft, NVIDIA, and Intel. PyTorch remains

the primary framework for model development, which reinforces
reliance on pickle due to user familiarity [88]. Interoperability chal-
lenges persist during model conversion [20, 47, 101], complicating
movement to other formats.

Summary: Despite positive steps to introduce secure alter-
native model formats like SafeTensors, pickle models are still
prevalent and monthly downloads are increasing.

3.2 PyTorch Weights-Only Unpickler Usability

Our longitudinal study showed that pickle remains popular. Next,
we assess whether the state-of-the-art safe loading approach, the
PyTorch weights-only unpickler, can effectively load the pickle
models we identify.

3.2.1 Measurements. The weights-only unpickler, introduced in
PyTorch 1.13 (Nov. 2022) and enabled by default in PyTorch 2.6 (Nov.
2024) [81], prevents access to dangerous callables, but can only load
models that use callables from a small allowed set of PyTorch APIs.5
Models that use additional callables cannot be loaded without user
intervention; convenience and pressure from end-users results in
library maintainers explicitly disabling the weights-only unpickler
to maintain compatibility.6 We investigate a sample of the pickle
models in our study to determine whether they use callables disal-
lowed by the weights-only unpickler, which affects the usability of
the weights-only unpickler as a solution.
Methods: We sampled the most popular 1,500 of the 4,553 pickle-
only repositories in our survey (§3.1). For each repository, we used
the Hugging Face API to download its pickle models and used
the fickling tool [67] to statically trace and inspect the callables
used. We compared the callables in the model trace to the callables
permitted by the weights-only unpickler’s default policy. Models
from 74 repositories failed to download or trace, leaving us with a
sample of 1,426 repositories.
Results: Of the 1,426 model repositories surveyed, 219 repositories

(15.4%) contained at least one pickle-basedmodel that cannot be loaded
by the weights-only unpickler due to disallowed Python callables.
These 219 repositories were downloaded 79.6 million times in the
final month of our longitudinal study. In total, 36 unique disallowed
callables appear in the 219 repositories. Many come from major
libraries (e.g., numpy and Hugging Face Transformers). We list all
disallowed callables that appear in traces in Figure 8 (Appendix A of
our extended report [54]). These models cannot be loaded securely
by the weights-only unpickler, so users must instead rely on the
weaker model scanners (§2.2) and their own assessments of the
models’ safety.

3.2.2 Motivating Example. We use an example to show the im-
plications of these weights-only unpickler incompatibilities. Con-
sider the flair ner-english-fast [33] model, a pre-trained pickle
model for named entity recognition of English text that gained over
1 million downloads. To load the model, its documentation refers
to the flair library’s SequenceTagger.load API.

5PyTorch provides a mechanism for the user to manually expand the set of allowed
callables [80], but the user is left to determine by themselves which callables to allow.
6As in the case of the flairNLP library (https://github.com/flairNLP/flair/commit/79
aa33706e7f753f2edf962feb1d75de22af0d1d).

https://github.com/flairNLP/flair/commit/79aa33706e7f753f2edf962feb1d75de22af0d1d
https://github.com/flairNLP/flair/commit/79aa33706e7f753f2edf962feb1d75de22af0d1d
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Figure 4: The Hugging Face repository for the

flair\ner-english-fast model shows the results of

the Hugging Face pickle scanning tool directly in the web

application interface [33]. The pickle scanning tool warns

that some imports in the model’s pickle file are suspicious

and require attention (highlighted).

The flair loading API exposes the user to risk. Flair models,
like this one, use callables that are not part of the weights-only
unpickler allowlist, so the API explicitly disables the weights-only
unpickler to load its models. To protect themselves during load-
ing, the user must depend on scanners. For this (benign) model,
the Hugging Face pickle scanner [41] warns the user that some
imports in the model pickle file are suspicious and require attention
(Figure 4). We determined that the model is benign by manually
reviewing its operations, and then reviewing the source code of the
flair library to ensure that these operations are expected. This task
is costly for every user to perform for every model. Our system
successfully infers the expected operations and securely loads this
model (§6.3) without manual effort.

Summary: While the weights-only unpickler offers security,
15.4% of sampled pickle repositories, with 79.6 million monthly
downloads, contain a model that cannot use it. Library APIs
disable the weights-only unpickler to load models, leaving users
to rely on (incomplete) model scanners and manual assessments
to determine if models are malicious.

4 System and Threat Model

Our motivational study shows the need for a new defense that
is both usable and secure. Here, we model the system we aim to
protect and the adversary to thwart:
System Model: The system loads a pickle-based model from an
untrusted source (e.g., Hugging Face Model Hub) using APIs pro-
vided by a trusted ML library (e.g., PyTorch). We specifically aim to
protect the system from the code introduced by the pickle program
and executed by the Pickle Machine.
Threat Model: The attacker provides a maliciously crafted pickle
to the victim with the intention of compromising the system. The
attacker’s goal is to execute arbitrary Python code (a “payload”),
either directly during model loading, or after by e.g., overwriting a
method in the model object with a reference to the payload.

Policy Generation

lib.py

Library Code

Model Class
Identifier

Policy Generator

Static Analysis

Model Loading Policy

Allowed Imports

Allowed Callables

app.py

Model Loading
PickleBall Loader

Pickle Program

GLOBAL ModelClass
GLOBAL os.system

...

REDUCE foo(arg)
data.pkl

Allowed
Import?

Allowed
Callable?

ModelClass

Stub Object

foo(arg)

model = library.load(’data.pkl’)

model.infer()
. Exception

ModelClass.infer()

✓

p

✓

p

Figure 5: PickleBall works in two phases: 1) policy gener-

ation and 2) safe model loading. During policy generation,

PickleBall takes as input the source code of a ML library

and a class definition to analyze, and outputs a policy of al-

lowed imports and invocations. During safe model loading,

PickleBall enforces the extracted policy to protect the load-

ing process. The loading application specifies the policy to

enforce, based on the expected class of the model, and begins

loading the model with the library API. The loading appli-

cation can trust that any invocations of the Pickle Machine

will be restricted to the configured policy.

• In scope: Manipulation of a pickle program in a pickle-based
serialized model to execute arbitrary code.

• Out of scope: Manipulation of the data or code in the serialized
model beyond the pickle program (e.g., model weights, data
pipeline programs); manipulation of the trusted library code
(e.g., PyTorch) used to load the serialized model.

We focus on the threat of pickle program code execution, and
exclude other threats from untrusted ML models. Other ML supply
chain attacks, like manipulating model weights to insert “back-
doors” [15, 38], are orthogonal and can be approached with layered
defenses. We do not consider other forms of attacks that manipulate
pickle programs, e.g., for denial of service [18] due to their weaker
attack primitives.

5 PickleBall Design and Implementation

PickleBall is designed to protect applications that use libraries
to load untrusted pickle models. The desired system guarantee is
that PickleBall raises a security exception when an adversary
invokes an unnecessary callable during model loading, while trans-
parently loading benign models. The idea behind PickleBall is
to first generate a policy describing a minimal set of operations
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(i.e., the callables that need to be imported and invoked) for instanti-
ating a given model object (§5.1), and then to enforce the generated
policy during unpickling, rejecting spurious operations performed
by malicious models (§5.2). Figure 5 provides an overview of the
aforementioned PickleBall components. PickleBall guarantees
that, given correct AST and type information, PickleBall raises
a security exception when the adversary invokes an unnecessary
callable (§5.3). We implement the design of PickleBall as a soft-
ware artifact (§5.4).

5.1 Policy Generation

PickleBall’s policy generation component is designed to automat-
ically create a policy that describes the set of operations (i.e., the
imported and invoked callables) permitted when loading a model
of a particular library class. The policy is generated before loading
the untrusted pickle model, and restricts the loading behaviors to
only those that are necessary for the library API.
Design Rationale: We guide our design by studying how pickle
models make use of Python callables. In regular usage, a pickle
program needs a callable to construct non-primitive objects and
(recursively) initialize the values of its attributes. Callables that
are not needed to instantiate a given object should not appear in a
pickle program; malicious payloads insert new code that does not
have a role in object initialization.

The challenging task of policy generation is determining which
callables are needed to instantiate an object. Python is a dynamic
language that permits a single variable to receive different types
at various program paths, and for objects to receive new attribute
variables after initialization. Identifying all attribute types requires
a path-sensitive analysis of the object creation code up to the point
that the object is serialized. Further, in the ML setting, the code that
creates the model object is not provided: the model saving program
that trained the model is not published along with the model.

However, we recognize that we can generate approximate poli-
cies for serialized models by analyzing the class definition of the
model in the library source code, even without access to the model
saving program. The majority of the class instance attribute infor-
mation is contained in the class definition, rather than in the model
saving application. Intuitively, for the object to be reusable, it has
to conform to an expected interface that is defined in the library.

We hypothesize that any unobserved object writes after the
model is created will either not introduce new types to the variables,
or will describe specialized metadata that is not necessary for the
general-use operations that the model loading application is likely
to perform, like inference. If new types are introduced, the model
class interface shared between the saving and loading programs is
violated. This is supported by our evaluation (§6.3.2).
Policy Generation Algorithm: Given an ML library and model
class definition, PickleBall analyzes the class definition to generate
a model loading policy as the sets of allowed imports and allowed
invocations; these represent the operations that a pickle program
needs to instantiate an instance of the class:

(1) Allowed imports: the set of callables permitted as arguments
to Pickle Machine import operations.

(2) Allowed invocations: the set of callables permitted arguments
to Pickle Machine invoking operations.

The set of allowed invocations is a sub-set of allowed imports—
before being invoked, the callable must be imported. However, a
callable that is imported but not invoked may only be used as a
reference or as a constructor with its allocator method ( __new__ ).

To statically generate the policy for a given class, PickleBall
implements and applies rules starting at the class definition, and
proceeds until the analysis terminates. PickleBall maintains a
candidate queue of classes that is initialized with the class definition.
PickleBall adds new classes to the queue as they are discovered
by the analysis rules, and removes them as each class is analyzed.
A class is only added to the candidate queue once to ensure that
the analysis terminates.

PickleBall applies the following class-analysis rules:

(1) If the class implements a __reduce__ method: identify the
method return values (a callable, arguments for the callable, and
optional state initialization values); add the returned callable to
the allowed imports and allowed invocations sets; identify the
types of all arguments for the callable and state initialization
values, and add their class definitions to the candidate queue.

(2) Otherwise: add the class to the allowed imports set; add all
sub-classes of the class to the candidate queue; add all types
of the class’s attributes (including attributes inherited) to the
candidate queue.

The PickleBall policy generation algorithm, shown in Algo-
rithm 1, operates over an abstract syntax tree (AST) representation
of the analyzed program, and expects recovered type information
to be labeled in the AST.

PickleBall’s static analysis cannot produce perfectly sound and
precise policies due to fundamental challenges in statically analyz-
ing Python code, which is dynamically typed [9, 37, 102]. When
recovered type information is over-approximate, PickleBall pro-
duces policies that contain more callables than is strictly necessary.
Under-approximate type information may result from Python’s
dynamic features, like dynamic typing and runtime attribute ma-
nipulation, producing unaccounted data dependencies during type
recovery. The missing type information creates policies that in-
correctly exclude callables. To account for these potential errors,
we design for security by separately enforcing allowed import and
allowed invocations, and for robustness with a lazy enforcement
mechanism (§5.2). We discuss how static analysis limitations affect
the whole-system analysis in Section 5.3.

5.2 Policy Enforcement

PickleBall’s policy enforcement module is designed to protect the
model loading application during loading. It is a drop-in replace-
ment for the system pickle module. It restricts the behavior of the
PM operations that import, initialize, and invoke Python callables,
so that only the callables permitted by the model loading policy are
accessible to the pickle program in the model.

The module receives the loading policy and pickle program as
inputs, and either outputs the deserialized object from the pickle
program, or raises a security exception. “Importing opcodes” can
only access callables that are allowed by the allowed imports policy.
“Allocating opcodes” are allowed to create instances of objects listed
in the allowed imports set by invoking their __new__ methods.
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Algorithm 1: The pseudocode algorithm designed to gen-
erate a model loading policy for a given class, performed
over an AST augmented with recovered type information.
Errors in the recovered type information introduce in-
correctness in the results of GetReduceReturnTypes and
GetAttributeTypes.
Input:ModelClass
Output: AllowedImports
Output: AllowedInvocations

1 Candidates := UniqueQueue(ModelClass)
2 AllowedImports := EmptySet

3 AllowedInvocations := EmptySet

4 while NotEmpty(Candidates) do

5 Candidate := Pop(Candidates)
6 if HasReduceMethods(Candidate) then

7 AllowedImports+= GetReduceReturn(Candidate)
8 AllowedInvocations+= GetReduceReturn(Candidate)
9 Candidates+= GetReduceReturnTypes(Candidate)

10 else

11 AllowedImports+= Candidate
12 Candidates+= GetSubclasses(Candidate)
13 Candidates+= GetAttributeTypes(Candidate)

Callable-invoking opcodes are either removed entirely, or restricted
to only invoke callables that are in the allowed invocations.

To enforce this, the module verifies that the name of a given
callable is present in the allowed invocations set. Conceptually,
an attacker could bypass the allowed imports/allowed invocations
separation by importing a callable present in the allowed imports
set but not in the allowed invocations set, then “renaming” it to a
callable that is in the allowed invocations set. To mitigate against
this, the policy enforcement module prevents building opcodes
from modifying __name__ and __module__ attributes.

As described in Section 5.1, PickleBall policies may exclude
valid callables when PickleBall fails to analyze dynamic Python
features; PickleBall is designed to be robust against this with lazy
enforcement. PickleBall aims to handle cases where the excluded
callables are not accessed in the model’s downstream use cases.
When PickleBall’s loader encounters a disallowed import oper-
ation, it creates a stub object instead of immediately raising an
exception. The stub object records the name of the callable, and
implements no functionality other than raising a security exception
when invoked or accessed. This permits the loader to proceed to
completion in the event that the stub object is never used, defer-
ring the violation until access. The security exception is also raised
when the stub object is accessed after initialization, preventing
an attacker from overwriting methods of the returned object with
denied callables that are later invoked.

5.3 Security Guarantees and Limitations

Whole-system Guarantees: PickleBall’s design thwarts the
adversary described in our Threat Model (§4) by restricting the
PM’s access to Python callables. The design guarantees that when
provided a correct AST with type information for a Python class
definition, PickleBall (1) raises a security exception when the

adversary invokes a spurious callable, while (2) successfully instan-
tiating any object that respects the attribute and type information
defined class definition. In our evaluation of PickleBall, we show
that existing state-of-the-art static analysis tools provide sufficient
AST and type-recovery information for practical use (§6).
Policy Generation Guarantees: When PickleBall is provided
a correct AST with type information, it is guaranteed to output a
loading policy that includes all allowed imports and allowed invo-
cations that can appear in when an object is saved in the pickle
format, provided that the object is not manipulated to add attribute
types outside of its object prototype.
Policy Enforcement Guarantees: When PickleBall loads a
model, it is guaranteed to prevent the invocation of any Python
callable that is not in the configured set of allowed invocations, and
to create sanitized stub objects for any callable that is not in the
configured set of allowed imports. The stub objects raise security
exceptions when accessed/invoked.
Whole-systemLimitations: PickleBall is limited fundamentally
by the challenges of analyzing dynamic Python code with static
analysis techniques, but PickleBall takes steps to mitigate these.
Python’s dynamic features, like runtime attribute manipulation and
dynamic typing, prevent PickleBall’s static analyses from creating
anASTwith sound and precise type information; this makes Pickle-
Ball’s policies unsound and incomplete. Over-approximations in
the AST result in policies that permit more Python callables than
necessary; PickleBall mitigates this by having separate allowed
invocations and allowed imports policies, so that only a small set of
callables may be invoked. Under-approximations in the AST result
in policies that omit benign callables from valid models; PickleBall
mitigates this with lazy policy enforcement so that omitted callables
only raise exceptions if they are invoked by the model, rather than
just initialized but unused. We evaluate PickleBall in Section 6 to
determine whether these limitations restrict it in practical settings
(and find that they do not).
Remaining Attack Surface: PickleBall prevents attackers from
importing and invoking arbitrary callables for malicious payloads.
However, akin to return-to-libc attacks, PickleBall does not pre-
vent the attacker from invoking permitted callables in sequences
or with parameters that result in unintended outcomes. We are
unaware of attacks leveraging these primitives, but whether this re-
maining capability is exploitable is a subject for further research (§7).

5.4 Implementation

PickleBall is implemented in a total of ∼1,300 Scala lines of code
(LoC) and ∼300 Python LoC divided between two primary compo-
nents: a static program analysis that builds upon the Joern frame-
work [103]; and a dynamic loader that modifies the existing Pickle
Machine. In the static analysis, ∼700 Scala LoC implement Algo-
rithm 1, ∼600 Scala LoC extend and fix Joern features, and ∼200
Python LoC integrate components. In the loader, ∼100 Python LoC
modify the Pickle Machine to implement lazy policy enforcement.
Joern provides a program analysis platform for PickleBall by
generating a Code Property Graph (CPG) with recovered type in-
formation for the target code; we extend Joern to improve type
recovery features and class inheritance tracking.
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(For more details, see Appendix C of our extended report [54]).
Our analysis queries Joern’s AST nodes for the relevant information.
Limitations:We inherit some limitations from the Joern program
analysis framework. The limitations include that PickleBall:
• Cannot parse new Python syntax features (e.g., generic types).
• Cannot recognize type hints provided in docstring comments,
but it can process type annotations introduced in Python 3.5.

• May fail to resolve dependencies, especially of builtin types.
• Cannot identify attributes of classes implemented in C.
These are engineering limitations and can be addressed with im-
provements to the underlying static analysis framework; they are
not fundamental limitations of the PickleBall approach for deter-
mining model loading policies from library class definitions.

To account for these limitations when evaluating the PickleBall
approach, we apply some manual library pre-processing before
analysis (§6.1), and discuss future work to reduce the need for
manual changes (§7).

6 Evaluation

We evaluate PickleBall with four Research Questions (RQs):
• RQ1: Malicious Model Blocking. How well does PickleBall
block malicious pickled models from executing their payloads?

• RQ2: Benign Model Loading. How well does PickleBall cor-
rectly load benign pickled models?

• RQ3: Performance. Is PickleBall’s runtime overhead practical
for deployment?

• RQ4: Comparison to SOTA. How does PickleBall compare to
the state-of-the-art security tools for protecting model loading
applications?

6.1 Constructing an Evaluation Dataset

To answer these questions, we need a comprehensive dataset of
pickle models consisting of both malicious and benign examples.
The dataset must contain models created by different libraries to
represent the diversity of loading APIs. We created our dataset by
combining existing datasets, open models on Hugging Face, and
constructing synthetic models. Our dataset contains 252 benign
and 84 malicious models, for a total of 336.
Benign Models and Trusted Libraries: Our dataset must repre-
sent how users typically load and use models; therefore, we need a
set of benign models and the libraries used to load and interact with
them.We first searched for libraries that meet three criteria: (1) they
load pickle models; (2) they have a model class type that is returned
by a loading API; and (3) if a foundational library (e.g., PyTorch or
transformers) type is used, the custom class adds new attributes
to the type. These criteria are motivated by PickleBall’s purpose:
to restrict the pickle operations permitted by a library loading API
based on analysis of the intended class type.

We identified candidate libraries by identifying popular pickle
models on Hugging Face and working backwards. We first searched
Hugging Face programmatically for pickle models, ordered by
monthly download rate, that had model loading documentation
directing users to a model loading library API. We manually re-
viewed the top 400 models (approximately 2 hours of review time)
to determine whether the identified libraries meet our criteria; this
resulted in 16 accepted libraries.

All libraries and their associated version information are listed in
Table 3, Appendix D of our extended report [54]. Then, we identified
candidate models associated with each library. We again queried
Hugging Face to identify models associated with the library, either
directly (as a piece of repository metadata) or by mention in the
model documentation or name. We collected models with ≥ 100
monthly downloads at time of collection. In total, we accumulated
252 models produced by 16 different libraries. All collected models
are listed in Table 4, Appendix D of our extended report [54].

We acknowledge that these models could themselves be mali-
cious. We partially mitigate this by sampling from the most fre-
quently downloaded models and libraries, checking model scanner
indications, and manually investigating unexpected callables when
restricted model loaders identify them.
Malicious Models: Our dataset must also represent the models
created by our intended adversary (cf. our threat model — §4); there-
fore, we need a set of malicious pickle models. We first collected
82 malicious models and pickle programs that were identified on
Hugging Face by two state-of-the-art model scanners [12, 107]. We
add our 2 malicious models constructed to bypass scanners (see
Appendix B of our extended report [54]), for a total of 84. All mali-
cious models contain pickle programs with payloads that import
and invoke Python spurious functions; payload behaviors include
accessing sensitive files, making network connections, creating
reverse shells, among others.

We acknowledge that thesemodels do not represent the complete
set of malicious behaviors; it is a best-effort collection of real-world
pickle model malware to represent today’s attackers. We aim to
prevent adversaries that execute arbitrary Python functions during
pickle loading, and the collected models all exercise this feature.
Test Harnesses: PickleBall protects programs that load un-
trusted models; therefore, we need a representative set of loading
programs to secure. We create one test harness for each library in
our dataset; the harness loads a model using the library API and
performs an inference task.
Library Pre-processing: We pre-process the libraries before ana-
lyzing them to account for limitations in the static analysis frame-
work (§5.4) and improve the correctness of the AST. We make
manual source code modifications (<10 LoC) when the library class
uses newer Python features of Python that Joern’s front-end parser
does not support, like generic type inheritance and type variables,
or when the analysis misidentifies an imported library alias.

For libraries that provide type hints in docstrings, which Joern
does not parse, we copy (but do not modify) the hints as type
annotations (<100 LoC). We manually copy dependencies into the
analysis scope when discovered during policy generation. Because
model loading policies are compositional, we pre-compute policies
for some frequently reused dependencies, including classes from
the Python standard library and PyTorch, and save them in a class
“cache” for PickleBall to access when it recognizes one of the
classes in its analysis. Due to the complexity and prevalence of
dynamically dispatched and C code implementations in PyTorch,
we supplement our analysis of PyTorch modules with the weights-
only unpickler policy in the class cache.
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6.2 RQ1: Malicious Model Blocking

PickleBallmust protect loading programs from pickle models with
malicious payloads. To evaluate this, we assess whether any of the
generated PickleBall policies allow malicious model executions.

6.2.1 Methods. For every harness program in our dataset, Pickle-
Ball generates a loading policy by analyzing the library and asso-
ciated model class. We use PickleBall to enforce the generated
policy while the harness attempts to load all malicious models in our
dataset. For each malicious model, we consider the model blocked
if PickleBall raises a security exception during model loading or
inference, preventing the payload from executing.

Some library APIs only load the pickle model after validating
that the accompanying model metadata is well-formatted (e.g., ar-
chitecture, name, version). For these libraries, we directly invoke
pickle.loads on the malicious model, while enforcing the as-
sociated PickleBall policy.

6.2.2 Results. For all generated policies, PickleBall prevents all
(100%) malicious models from executing their payloads. Since Pickle-
Ball’s generated policies do not contain the dangerous callables
leveraged by the malicious models (e.g., eval(), system()), Pickle-
Ball’s loader raises an exception for all malicious models.

RQ1 Summary: PickleBall generates policies that effectively
prevent all malicious pickled models in our dataset from execut-
ing their payloads.

6.3 RQ2: Benign Model Loading

PickleBall must let users load and perform tasks with benign
models. Its policies must not be so restrictive that the models are
unusable. We therefore evaluate PickleBall’s policies for load-
ing and correctly using the benign models in our dataset (§6.3.1
and §6.3.2). To ensure robustness of the loaded model despite lazy
enforcement, we further test the successfully loaded models that
contain stub objects (§6.3.3 and §6.3.4).

6.3.1 Methods. We measure PickleBall’s ability to generate and
enforce policies that correctly load and execute benign models. For
each library in our dataset, we generate a model loading policy.
Then, we enforce the policy while using the library’s test harness
to load each library’s models. Once loaded, we test the model by
performing one inference task with a test input, and capture the
output. For comparison, we then re-execute the test harnesswithout
enforcing any policy (by using the regular pickle module), and
capture the inference result. We consider the model load a success
when (1) PickleBall loads the model without raising exceptions,
and (2) the inference results are equivalent between the PickleBall
and unrestricted environments.

6.3.2 Results. PickleBall generates policies that, when enforced,
correctly load and execute 79.8% of benign models in the dataset
(Table 1). In most cases, the policies contain all callables (Table 1
– Imports and Invocations Allowed) that are seen in the model
traces (Imports and Invocations Observed). In some cases, Pickle-
Ball’s policies do not include callables that are included in the
models (flair, PyAnnote, YOLOv5, and YOLOv11), resulting in the
creation of a stub object that is occasionally invoked, hence leading

to a security violation. We investigated the failed models/cases to
determine their causes:

• Attributes set after initialization: PickleBall fails to identify
attribute types that are set outside of the type declaration. For
example, after initializing the model object, some libraries allow
users to write training metadata to the model, including data
for the optimizer used and paths to output files. In many cases
(e.g., 12 flair models), PickleBall misses callable types set this
way but still successfully loads the model, since this metadata
is not used. However, for one flair model and three PyAnnote
models, a metadata object is invoked during loading.

• Follow-on pickle loading: PickleBall fails to load two models
from the MeloTTS library after they have been loaded, due to
additional pickle loading during inference. PickleBall’s policy
includes all callables needed to load the MeloTTS models. How-
ever, during inference, an additional pickle model is loaded that
invokes a disallowed callable, resulting in a security violation.

• Library version drift: one PyAnnote model fails to load for
legacy reasons: it uses a callable that was included in models
created with previous versions of PyAnnote. The callable’s class
declaration exists in the library code base as an unused stub, with
a comment that it is needed for backward compatibility reasons,
but is otherwise unused. Therefore, PickleBall’s analysis failed
to recognize it as necessary for model loading.

• Namespace inconsistency: the remaining YOLOv5 and YOLOv11
models use inconsistent naming conventions. For example, a
policy includes the callable yolov5.models.common.Conv; however,
the model refers to this callable as models.common.Conv, while
referring to other callables by the full yolov5.* namespace.

6.3.3 Lazy Enforcement Robustness – Methods. Due to Pickle-
Ball’s lazy enforcement, models can load successfully with in-
complete attributes. To further ensure that the benign models are
robustly instantiated with all attributes needed for inference, we
evaluate these models with a more rigorous test suite of inputs. We
investigated the libraries that successfully load models with stub
objects, i.e., Flair, PyAnnote, YOLOv5, and YOLOv11.

For each library, we find an extensive evaluation dataset to test
each loaded model: for Flair, we used various Named Entity Recog-
nition and Universal Dependencies [28] datasets that come pre-
packaged with the Flair library [34]; for PyAnnote, we used the
AISHELL-4 speech dataset [35]; for YOLOv5 and YOLOv11, we used
the 2017 Test Images Common Objects in Context dataset [57].

For each model that PickleBall successfully loads, we evaluate
the model on the dataset and ensure that the models do not raise
security errors (i.e., they do not access any stub objects).

6.3.4 Lazy Enforcement Robustness – Results. All models yield the
same results when loaded with PickleBall, compared to when
loaded with the regular, unrestricted Pickle Machine. None of the
models raise security errors during dataset evaluation, indicating
that models are correctly instantiated, despite using stub objects.

RQ2 Summary: PickleBall generates policies that safely load
and execute 79.8% of benign pickled models in our dataset.
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Table 1: PickleBall generates loading policies for popular libraries (see GitHub Stars), which are evaluated by loading popular

models (see cumulative model downloads in March 2025). We compare the number callables observed in the models to the

callables allowed by the policies, and the number of stub objects that are created or invoked when the policies exclude callables.

We compare PickleBall’s loading success rate with the weights-only unpickler.

Popularity Imports Invocations Loading

Library Stars Downloads Observed Allowed Stub Objects Observed Allowed Stub Calls # Models WOUp (% ) PickleBall (%)
CONCH [19] 342 13.7K 3 822 0 2 61 0 1 1 (100.0%) 1 (100.0%)
FlagEmbedding [32] 9.3K 11.1M 4 773 0 2 61 0 14 14 (100.0%) 14 (100.0%)
flair [66] 14.1K 3.05M 34 1186 17 6 62 2 18 0 (0.0%) 17 (94.4%)
GLiNER [105] 1.9K 760K 3 870 0 2 61 0 17 17 (100.0%) 17 (100.0%)
huggingsound [45] 447 56.1M 3 767 0 2 61 0 17 17 (100.0%) 17 (100.0%)
LanguageBind [55] 800 495K 4 992 0 2 61 0 8 8 (100.0%) 8 (100.0%)
MeloTTS [63] 5.9k 406K 3 852 0 2 61 0 8 8 (100.0%) 6 (75.0%)
Parrot_Paraphraser [22] 890 911K 3 774 0 2 61 0 1 1 (100.0%) 1 (100.0%)
PyAnnote [74] 7.2k 32.6M 18 1085 9 5 64 0 14 0 (0.0%) 10 (71.4%)
pysentimiento [82] 588 1.31M 4 777 0 2 61 0 4 4 (100.0%) 4 (100.0%)
sentence_transformers [84] 16.4k 204M 5 1087 0 2 61 0 76 76 (100.0%) 76 (100.0%)
super-image [31] 170 64.9K 3 1016 0 2 61 0 6 6 (100.0%) 6 (100.0%)
TNER [97] 387 25.0K 4 769 0 2 61 0 4 4 (100.0%) 4 (100.0%)
tweetnlp [11] 341 80.7K 4 778 0 2 61 0 1 1 (100.0%) 1 (100.0%)
YOLOv5 [95] 53.4k 24.8K 28 920 7 4 61 0 12 0 (0.0%) 4 (33.3%)
YOLOv11 (ultralytics) [96] 39.2k 38.4M 63 1816 13 11 61 6 51 0 (0.0%) 15 (29.4%)

Total 252 157 (62.3%) 201 (79.8%)
Average 75.0% 87.7%

6.4 RQ3: Performance

PickleBall must be fast enough for practical use in developer and
user tasks. We analyze two aspects of PickleBall’s performance:
(1) the time to generate a policy for a class, which is an offline, one-
time analysis cost (§5.1), and (2) the additional runtime overhead of
enforcing a policy to load and use a model, compared to the regular
Pickle Machine.

6.4.1 Methods. To measure the time to generate policies, we ex-
ecute PickleBall’s policy generator three times for each library
in our dataset and compute the average between the three. We
measure the real time using the Python time library. We run this
experiment on a laptop with a 14-core Intel i7 CPU and 32GB of
RAM, representing a commodity developer environment.

Tomeasure the additional runtime overhead of PickleBall’s pol-
icy enforcer, we isolate and record the time each harness program
spends invoking the pickle load function during model loading.
We first execute harness program with the unrestricted Pickle Ma-
chine environment to load a benign model. Then, we perform the
same execution with PickleBall enabled. For fair comparison, we
ensure that the unrestricted environment always uses the Python
implementation of the Pickle Machine, instead of an optimized C
implementation. We run this experiment on a server with a 32-core
AMD EPYC 7502 processor and 256GB of RAM (Ubuntu 24.04); this
is used for the attached hard-drive space for interacting with the
hundreds of models in our dataset.

6.4.2 Results. PickleBall generates policies for all libraries in a
median of 14.0 seconds, withminimum 9.0 seconds (CONCH library)
and maximum 29.8 seconds (YOLOv11 library) (Figure 6). This pol-
icy generation execution time is reasonable for integration within
project build systems, as the policy needs only to be generated when
the analyzed library source code is modified. PickleBall’s policy
enforcer incurs negligible overhead, with a 0.42ms (1.75%) median
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Figure 6: Time to generate a policy for each library class in

dataset (averaged over 3 runs). This is a one-time step that

can be integrated into existing workflows — either by library

maintainers in the library’s release process, or by a user, prior

to loading the model.

runtime overhead compared to the unrestricted Pickle Machine, as
depicted in Figure 7.

RQ3 Summary: PickleBall policies are generated in a median
14.0 seconds across the evaluation libraries, PickleBall incurs
a median runtime overhead of 0.42ms when loading models.

6.5 RQ4: Comparison to SOTA

We compare PickleBall with three existing state-of-the-art (SOTA)
tools that share the same goal of defending against our threat model
described in Section 4. As discussed in Section 2.2, existing pickle
model defense tools fall into two categories: model scanners and
restricted loading environments (like PickleBall).
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Figure 7: Time spent executing pickle.load in test loading pro-

gram, with and without PickleBall (averaged over 3 runs

after 1 warmup run). PickleBall incurs a median runtime

overhead of 1.75% and average runtime overhead of 2.62%.

Table 2: Comparison of PickleBall to SOTA alternatives.

Model scanning tools achieve low false positives on our

dataset, but misclassify malicious models. Restricted loaders

(including PickleBall) are secure, at the cost of blocking

benign models. PickleBall loads more benign models than

the weights-only unpickler due to its custom policies for

each model class.

Tool # TP # TN # FP # FN FPR FNR

ModelScan [7] 75 236 16 9 6.3% 10.7%
ModelTracer [12] 44 252 0 40 0% 47.6%

Weights-Only Unpickler [79] 84 157 95 0 37.7% 0%
PickleBall (our work) 84 201 51 0 20.2% 0%

We compare against two model scanners: ModelScan [7],
and the scanner implemented by Casey et al. [12] (henceforth
ModelTracer).7 ModelScan is a static analysis tool that applies
a denylist to make determinations about models, and is inte-
grated into Hugging Face. ModelTracer is a dynamic analysis
tool that traces the model’s invocations while it is loaded via
pickle.loads()/torch.load(), and similarly applies a denylist.

We compare against one restricted loading environment: the
weights-only unpickler [79]. The weights-only unpickler loads
models by only permitting them access to callables in a rigid (but
manually configurable) allowlist policy.

6.5.1 Methods. We evaluate the model scanning tools by providing
each model in our dataset as an input to the tool. We expect the
model scanners to alert when provided a malicious model input,
and otherwise not to alert.

We consider correctly identified malicious models as true posi-
tives, correctly identified benign models as true negatives, incor-
rectly identified malicious models as false negatives, and incorrectly
identified benign models as false positives.

7The authors provided access to the tool for evaluation purposes.

We evaluate the weights-only unpickler by attempting to load
each model in our dataset using the PyTorch loading API with the
weights-only unpickler enabled. We use the weights-only unpick-
ler’s default policy while loading models. We expect restricted load-
ing environments like the weights-only unpickler and PickleBall
to succeed when loading benign models and to raise exceptions
when loading malicious models.

For parity when comparing with the model scanning tools, we
consider raising an exception during malicious model loading as
a true positive, correctly loading a benign model as a true nega-
tive, incorrectly rejecting a benign model as a false positive, and
incorrectly loading a malicious model as a false negative.

6.5.2 Results. Comparisons of the tools are shown in Table 2. The
model scanning tools resulted in few (16) false positives, while the
restricted loaders resulted in 0 false negatives. Table 1 compares the
success rate of PickleBall and the weights-only unpickler when
loading benign models.

ModelScan incorrectly identified 9 malicious models as benign
(false negatives) and did not report false positives. We identified
three categories of ModelScan’s false negatives: (1) five mod-
els implement payloads using callables that are not included in
ModelScan’s rigid denylist; (2) three models use dynamic runtime
operations (e.g., numpy.load() ) to load additional payloads that
ModelScan fails to statically identify; and (3) one model uses mul-
tiple STOP pickle opcodes, resulting in ModelScan terminating its
analysis after reaching the first one and missing the rest of the mali-
cious payload. While this last model would not execute its malicious
payload when executed by the Pickle Machine, it could be loaded in
non-standard ways by another malicious pickle program to execute
its payload. Categories (1) and (2) are fundamental limitations to
using a static analysis denylist approach: the denylist cannot be
complete and can be subverted.

ModelTracer successfully identified 44 malicious models but
missed the remaining 40, resulting in a high false negative rate
of 47.6%, but did not report false any positives. ModelTracer’s
false negatives appear from its limited denylist: it alerts on models
that invoke the execve, connect, socket, or chmod system calls.
ModelTracer does not consider file access operations to be in-
dicators of malicious behavior, so malicious models that perform
dangerous file reads and writes are not identified. This once again
highlights the scanning limitation of relying on an incomplete
denylist to indicate malicious behavior.

The weights-only unpickler, like PickleBall, prevents all ma-
licious models from loading. However, it incorrectly blocks 95 be-
nign models from loading, compared to PickleBall’s 51. However,
PickleBall’s custom generated policies load additional models that
the weights-only unpickler can not.

RQ4 Summary:While PickleBall prevents all malicious mod-
els from loading, model scanning tools fail to identify all ma-
licious models. The weights-only unpickler is also effective at
preventing malicious models from loading, but is less effective
than PickleBall at loading benign models due to its limited
default policy.
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7 Discussion and Future Work

PickleBall’s remaining attack surface: PickleBall reduces
the available attack surface by significantly restricting access to
callables, but it does not guarantee that the remaining callables
cannot be composed in amalicious payload (§5.3). PickleBall could
be compromised by code reuse techniques [21, 69] to stitch together
permitted calls to construct an exploit. Thus far, no such attacks
have been observed, but the question remains: can we generate
malicious payloads that obey the policy constraints enforced by
PickleBall and the weights-only unpickler?

Huang et al. [40] studied manual implementations of restricted
unpicklers in the general (non-ML) setting, and devised attack
strategies to overcome callable allowlists. When faced with well-
implemented restricted unpicklers (i.e., when recursive attribute
look-ups and indexing are disallowed by design, as in PickleBall
and the weights-only unpickler), their approach degrades to man-
ual policy inspection. Liu et al. [59] implemented PickleCloak
to automatically detect useful pickle gadgets, but apply it to by-
pass scanner deny-lists rather than restricted loader allow-lists.
Future work should identify properties of callables to automatically
distinguish whether a callable can be used maliciously to bypass
restricted allow-lists.
Long-term outlook for pickle in ML: Pickle remains a popu-
lar model format (§3), despite more secure alternatives. Each ma-
jor model format provides tradeoffs in flexibility (pickle), security
(SafeTensors), and efficiency (GGUF). Pickle is flexible, as it can
serialize virtually any Python object, including complex models
and non-standard data structures. SafeTensors was developed for
security-sensitive deployments, with a structured, memory-mapped
format. GGUF maximizes performance on inference-optimized run-
times. Because these formats are complementary and used as defaults
in different popular frameworks and ecosystems, we expect them to
coexist going forward. PickleBall does not discourage the adoption
of secure alternatives to pickle, but provides a secure option for the
large and growing pickle population.

One rapidly evolving area of MLmodels is large language models
(LLMs), where pickle still appears despite major industry leaders
releasing foundation models in the SafeTensors and GGUF formats.
Popular foundation models like LLaMA-4 [62], Qwen-3 [83], and
Deepseek-R1 [27] are encouragingly released with the SafeTensors
format (although some, like LLaMA-3.1 [61], still provide a pickle
model backup). However, foundation models are often adapted
(e.g., fine-tuned) and redistributed, often with new formats and
artifacts, including pickle. For example, we observed instances of
models that are fine-tuned from LLama-4 [46, 60], Qwen-3 [85, 89],
and Deepseek-R1 [93] and distributed with an additional pickle
file that represents the training arguments used during fine-tuning.
Even when secure formats are adopted for foundation LLM models,
pickle continues to persist in the LLM ecosystem, which is consis-
tent with our analysis (§3.1) and justifies the need for PickleBall.
Generalizing PickleBall: PickleBall is designed to protect
pickle model loading and is evaluated on models found on Hugging
Face, but its approach can generalize to protect (1) other model for-
mats; and (2) other pickle applications. PickleBall aims to protect
pickle deserialization for ML models, but its approach does not rely
on any ML-specific properties.

This approach allows PickleBall to protect other applications
that receive pickle data. To generalize, PickleBall’s analysis re-
quires that the intended type of the pickle object is known before
loading (§5.1). In the ML setting, this is reasonable because the pro-
tected program is a client application. Other approaches are needed
when the security analysis does not know a priori the intended
type of the serialized object [24, 106].

PickleBall’s approach works for the pickle format because it
has (dangerously) expressive deserialization operations, and is used
by trusted libraries that implement their own custom model classes.
Other model formats that meet these criteria are candidates for
protection in the PickleBall approach. Zhu et al. show that the
TensorFlow SavedModel format has undesirable operations [108];
libraries that extend the TensorFlow model class with their own
custom behaviors could use a PickleBall approach to restrict the
allowed behaviors, but we are not aware of any that do. Formats like
SafeTensors andGGUF are not known to have dangerous operations;
if any were discovered, then a PickleBall approachmight apply for
identifying when to permit certain operations. We aim to explore
which other model formats meet these criteria for PickleBall to
assist in securely loading.

We evaluated PickleBall using models sourced from Hugging
Face, but PickleBall will work similarly for models from any plat-
form. The inputs to PickleBall are ML libraries and pickle models,
which are ML artifacts that are not tied to the hosting platform.
Hugging Face is the largest model hosting platform, with over 1.8M
models available in July 2025. ModelScope [1] is a recent hub man-
aged by China’s Alibaba and hosts 80K models. It imitates Hugging
Face’s design and likewise has models with varying serialization for-
mats. Other model communities, including Qualcomm AI Hub [4],
PyTorch Hub [3], and TensorFlow Hub [5], have fewer than 500
models each and many are also hosted on Hugging Face. The ONNX
Model Zoo [2] is now deprecated and archived on Hugging Face.
Hugging Face models are representative of the kinds of models that
PickleBall defends against.
Policy maintenance and distribution: PickleBall’s intended

workflow is that when a library is updated, its PickleBall policy
would be updated as well. PickleBall makes policy maintenance
easy for users with fast policy generation, incremental changes,
and opportunities for seamless distribution.

PickleBall generates policies quickly, completing in under 30
seconds for each library in our evaluation (§6.4, Figure 6). This is
reasonable for a task that must only occur when the library changes,
and not every time PickleBall loads a model.

In practice, library updates result in either incremental policy
changes or clearly documented breaks in supported model versions,
leading to easier policy maintenance. After our evaluation con-
cluded, we noticed one library, FlagEmbedding, receive updates
(commit bf6b649 to 875fd4f), but PickleBall produced policies
before and after with a 90% Jaccard similarity index, and which suc-
cessfully loaded the same models in our dataset. When the library
model class changes significantly, the library cannot load existing
models, but we find it easy in practice to match models with a
supported library version, due to the model documentation, as we
do in our evaluation (§6.3.2). For example, we easily distinguish all
models belonging to YOLOv5 and its newer version, ultralytics.
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PickleBall provides opportunities for easier policymaintenance
if it gets adopted further in the model development life cycle. When
library maintainers adopt PickleBall to generate policies automat-
ically in the library release process, they can provide the updated
policies alongside the libraries directly to users.
Removing library pre-processing: To account for implementa-
tion limitations (§5.4) when evaluating the fundamental PickleBall
idea, we performmanual pre-processing of some libraries (§6.1), but
future engineering work will remove this step. The purpose of the
pre-processing is to overcome implementation limitations of the
underlying static analysis framework that PickleBall depends on
to produce an accurate type-annotated AST. To account for these
limitations, we apply the following pre-processing steps:

• Remove generic type syntax from class inheritance statements.
• Copy type hints in comments into type annotation form.
• Copy relevant dependencies into the analysis scope.
• Reference the weights-only unpickler policy when a class inherits
the torch.nn.Module class.

Manual source code modifications are applied to five out of 16
libraries in our dataset, and each account for between ∼10 and ∼100
modified LoC. Future engineering work to improve the underlying
static analysis framework will remove the need for manual source
code pre-processing.

8 Related Work

MLModel Loading Security: Pickle is not intended for untrusted
data, but its proliferation as a model format created a security
problem. To bring attention to the issue, security company Trail
of Bits released the fickling tool for manipulating and analyzing
pickle programs in ML models [67]. The fickling module provides
manually-crafted allow-lists for select ML libraries, similarly to
PickleBall, but requires expert-led audits to maintain the allow-
lists, where PickleBall aims for automatic policy creating. New
proposals for identifying malicious pickle models include dynamic
[12] and static [107] scanners. Scanners take a model as input, and
attempt to make an assessment of it based on fixed rules about
malicious behaviors. Instead, PickleBall takes a model and the
source code library that allegedly produced the model for context,
and produces policies for the model based on that context. We
showed in Section 6.5 that PickleBall’s tailor-made policies result
in no false negatives while comparative model scanners do produce
false negatives due to their fixed rules.
Deserialization Attacks and Defenses: Deserialization vulner-
abilities exist beyond the ML context. PainPickle [40] explored
Python pickle security by creating a taxonomy of errors in custom
Unpickler implementations, and devised attack strategies. We use
their contributions (and suggestions) to guide the proper imple-
mentation of PickleBall’s loader.

Other programming languages also have insecure deserializa-
tion APIs that need to be secured. Quack [24] proposes a generic
deserialization defenses for PHP by employing a “static duck typ-
ing” static analysis, and Zhang et al. [106] propose a static analysis
defense for Java. Python’s pickle deserialization API is more expres-
sive than those in PHP or Java, which are unable to directly invoke
functions; this expressivity adds complexity to security policies.

Querying Code-graphs for Software Security: Graph represen-
tations are well-established for general program analysis tasks.
For security specific tasks, Joern [103] introduced the Code Prop-
erty Graph (CPG), a data structure that combines classic program
analysis concepts into a representation that is easy queried to iden-
tify vulnerabilities. Follow on work ODGEN [56] extended Joern’s
CPGs into an Object Dependence Graph (ODG), capturing inter-
actions from the object’s point of view to detect vulnerabilities in
Node.js packages. RogueOne [87] further evolved ODGs to form
a data-flow relationship graph, fully capturing data-flows among
objects. QL [64] and Datalog [86] based approaches inspired the
CodeQL [13] query platform, which is used for vulnerability vari-
ant analysis tasks. PickleBall’s implementation uses these code
querying features and extends them to improve the accuracy of the
program types recovered. Improvements to these program repre-
sentations can lead to improved accuracy of PickleBall’s policies.

9 Conclusion

Serialization and deserialization enable code and data exchange.
Many recent works observe security vulnerabilities in deserial-
ization, across various programming languages and contexts. We
specifically examined the security vulnerabilities in pre-trained
model deserialization that result from the use of (dynamically typed)
Python and the reliance on Python’s (insecure) pickle format. We
found that pickle is common among the most popular models on
Hugging Face, and that existing defenses are insecure or inappli-
cable to a substantial fraction of these models. Our PickleBall
approach applies a novel program analysis to add greater security
to model deserialization. In our evaluation, we demonstrated that
PickleBall supported most existing benign models while prevent-
ing all known attacks in malicious models. We believe PickleBall
is a promising complement to existing security resources in the
pre-trained model ecosystem.8
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