
FuzzCache: Optimizing Web Application Fuzzing Through
Software-Based Data Cache

Penghui Li
Zhongguancun Laboratory

Beijing, China
lipenghui315@gmail.com

Mingxue Zhang∗
The State Key Laboratory of Blockchain and Data Security

Zhejiang University
Hangzhou, China

mxzhang97@zju.edu.cn

Abstract

Fuzzing has shown great promise in detecting vulnerabilities in
server-side web applications. In this work, we introduce an innova-
tive software-based data cache mechanism that complements and
improves all existing web application fuzzing tools. Our key obser-
vation is that a great proportion of execution time (e.g., 50%) of web
applications is spent on fetching data from two major sources: data-
base and network; our in-depth investigation reveals that the same
data is often repeatedly fetched across fuzzing trials. We thus de-
sign a new solution, FuzzCache, that stores the data into software-
based caches, mitigating the need for repeated and expensive data
fetches. FuzzCache exposes the cached data across fuzzing trials
through inter-process shared memory segments. It also, as the first
work, incorporates just-in-time compilation to avoid the perfor-
mance overhead associated with interpreting PHP code in real time,
thereby enhancing execution efficiency.

We demonstrate that FuzzCache significantly enhances web
application fuzzing performance. In our experiments, we integrated
FuzzCachewith both a black-box fuzzer (Black-Widow) and a grey-
box fuzzer (WebFuzz). The results illustrate that FuzzCache accel-
erates both black-box and grey-box fuzzing, achieving a throughput
increase of 3× to 4×. FuzzCache substantially improves code cover-
age by an average of 25%. Consequently, FuzzCache enables faster
vulnerability detection, leading to the discovery of a greater number
of vulnerabilities.

CCS Concepts

• Security and privacy→Web application security.

Keywords

Web Fuzzing; Data Cache; System Optimization
ACM Reference Format:

Penghui Li and Mingxue Zhang. 2024. FuzzCache: Optimizing Web Appli-
cation Fuzzing Through Software-Based Data Cache. In Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications Security

∗Corresponding author. The author is also with Hangzhou High-Tech Zone (Binjiang)
Institute of Blockchain and Data Security, Hangzhou, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670278

(CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3658644.3670278

1 Introduction

Web applications have become the cornerstone of our online in-
teractions, powering many important services such as banking,
e-commerce, and social networks. Due to their critical and wide-
spread usage, web applications have become desired targets for
various vulnerability exploitation and attacks [15]. The conse-
quences of such attacks are profound, ranging from unauthorized
access to sensitive information to service disruptions and data
breaches [15, 22, 23, 25, 27]. It was reported that 64% of industry
businesses had experienced web-based attacks in the past [1].

To eliminate the threats, dynamic approaches, especially web
application fuzzing (scanning), have emerged as indispensable tech-
niques for detecting vulnerabilities with heightened precision and
efficiency. Unlike static analysis methods that examine the source
code without executing it, fuzzing operates dynamically at run-
time, mimicking real-world interactions and usage scenarios. For
instance, Black-Widow [19], a black-box fuzzer, models the naviga-
tion of web applications for stored cross-site scripting (XSS) vul-
nerability detection. WebFuzz [40], Witcher [39], and Atropos [20]
further incorporate coverage feedback to improve fuzzing efficiency.
These works have demonstrated their superior performance in de-
tecting various vulnerabilities.

This paper improves web application fuzzing from a different
angle. It is inspired by an in-depth empirical study of the execution
dynamics of web applications. We first profiled several represen-
tative web applications and utilized XHProf [26, 34] to monitor
the execution time of each function. Our study revealed that two
categories of data access constitute a significant portion of the exe-
cution time during fuzzing. Around 50% of the execution time is
dedicated to database operations using SQL functions and network
operations using cURL functions. In particular, the same data is
frequently accessed across multiple fuzzing trails by providing iden-
tical arguments in the function calls. Further experiments proved
the discoveries apply to a wide range of web applications as they
are often database-backed.

Motivated by our discoveries, we propose to optimize web appli-
cation fuzzing by introducing software-based data caches so that
repeated, expensive data fetches can be mitigated with efficient
cache fetches. However, implementing this is intricate, particularly
for database operations due to their multi-step nature of data ac-
cess in web applications. Fetching data from a database typically
requires three dependent steps: 1 establishing a database connec-
tion, 2 executing a SQL query, and 3 fetching data from the query

https://doi.org/10.1145/3658644.3670278
https://doi.org/10.1145/3658644.3670278

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Penghui Li and Mingxue Zhang

results. Among these steps, the first two are considerably more ex-
pensive and should be eliminated whenever viable, while the data
is used afterward. The challenge lies in determining whether the
operations can be eliminated through cache (C1) at the first two
steps, given that what data to fetch is still unknown (which will
be known till 3). Besides, the data records can be dynamically
updated by various queries. It is also challenging to maintain data
validity as some update queries can invalidate the cached data (C2).

Another challenge lies in preserving the data cache throughout
multiple fuzzing trials (C3). In web applications, each request or
fuzzing trial is commonly managed by isolated processes or threads.
As a result, a database connection is initiated for each request and
terminates after fulfilling that request. Therefore, traditional in-
memory data storage like Memcached [29] becomes impractical, as
the data does not persist across requests or fuzzing trials. While
Redis [36] allows for both in-memory data storage and persistent
data on disk, it introduces notable computational expenses to man-
age data access for each request. Finally, we aim to implement the
software-based cache in a backward-compatible way so that it can
be readily integrated with existing fuzzers, which is also difficult
(C4).

To address these challenges, we introduce a novel tool,
FuzzCache, that provides caches for PHP-based web applications.
FuzzCache incorporates a query-centric cache design. It maps the
query strings in 2 to cache entries that store the associated data
of the queries. It also reschedules the data fetching steps using
our novel lazy connection and data prefetch techniques to address
C1. To resolve C2, FuzzCache maintains a dirty bit for all entries,
achieving effective and efficient cache invalidation. FuzzCache
manages the caches using inter-process shared memory segments
to address C3, and is carefully designed to avoid interference with
existing fuzzers, for addressing C4.

In addition to the database cache, we also implement several
other optimizations to enhance the fuzzing efficiency.We first cache
the data fetched from the networks. This proves to be particularly
effective, as we observe a significant portion of cURL calls request-
ing identical data. Furthermore, we harness the potential of code
caches. In PHP, the adoption of OPCache [7] is a common prac-
tice to cache precompiled script bytecode, preventing the need for
repetitive code parsing and lexing. Although OPCache has been
enabled in one previous fuzzer [20], there exists a problem: this
still necessitates repeated bytecode interpretation across multiple
requests. To address this, we introduce a pioneering optimization
by capitalizing on the just-in-time (JIT) compilation of PHP. To the
best of our knowledge, we are the first to apply JIT in optimizing
web application fuzzing.

We conducted a thorough evaluation of FuzzCache using a di-
verse range of web vulnerability test suites and real-world web
applications. To assess the effectiveness, we integrated FuzzCache
with two state-of-the-art web application fuzzers, namely Black-
Widow [19] and WebFuzz [40]. The results revealed that, on av-
erage, FuzzCache led to a notable improvement in code cover-
age by 29.4% and 24.9% against Black-Widow and WebFuzz, re-
spectively. FuzzCache demonstrated a significant enhancement in
fuzzing throughput, achieving a 3.8× and 3.3× increase on aver-
age against Black-Widow and WebFuzz, respectively. Remarkably,
FuzzCache enabled the detection of 6 and 7 vulnerabilities that

remained undetected by Black-Widow and WebFuzz without its
activation. Our ablation study further underscored the substantial
benefits of the cache mechanism and JIT techniques in the context
of web application fuzzing. We plan to open-source the artifact at
https://github.com/secureweb/fuzzcache.

In summary, this paper makes the following contributions.
• An in-depth measurement. We conducted a thorough exami-
nation of web application execution time, revealing a substantial
cost dedicated to repetitive data access.

• Implementation of data caches. We designed an effec-
tive software-based data cache mechanism for fuzzing. This
mechanism effectively mitigates the cost of data fetching from
databases and networks.

• JIT compilation for fuzzing. We proposed a new application
of JIT compilation to enhance fuzzing efficiency.

• Benefits to fuzzing. We developed an innovative tool,
FuzzCache, that complements existing fuzzers and offers a sig-
nificant boost in fuzzing performance.

2 Background

We provide the necessary background knowledge in this section.

2.1 Web Applications

Web applications often generate responses on web pages based on
user requests. Upon receiving the requests, the web server responds
with a tailored output to fulfill the unique interactions of each
user. For optimal flexibility, developers frequently turn to dynamic
interpreted programming languages. Among them, PHP stands out
as the most prevalent language, powering an impressive 76.8% of
websites today according to a recent survey [42]. Notably, major
content management systems like WordPress [41], which hold a
substantial market share, are built using PHP. In this work, we
focus on PHP-based web applications.
Web request handling. When a client-side user triggers actions
in her browser, a web request will be sent to the server-side web ap-
plication. The web server (e.g., Apache [2]) then allocates dedicated
processes or threads to handle the request. Each process or thread
operates in isolation and executes server-side PHP code to perform
tasks such as accessing databases or executing business logic. The
dynamically generated contents are then transmitted as an HTTP
response back to the client, concluding the request-response cycle.
PHP code interpretation and OPCache. PHP code in web ap-
plications undergoes interpretation by the PHP interpreter [9], as
opposed to C/C++ programs that are precompiled into machine
code or binary. In the PHP code interpretation process, the PHP
interpreter first parses and lexes the PHP code into bytecode (PHP
OPCode), validating syntactic and semantic correctness. This inter-
mediary OPCode represents a low-level set of instructions closely
mirroring the logic of the original PHP script. The Zend engine [45]
of the PHP interpreter then interprets this OPCode.

PHP OPCache, an abbreviation for OPCode Cache, emerges as a
crucial component for optimizing the performance of PHP-based
web applications. It strategically stores OPCode in shared memory,
preventing repeated OPCode generation when clients request the

https://github.com/secureweb/fuzzcache

FuzzCache : Optimizing Web Application Fuzzing Through Software-Based Data Cache CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

same PHP scripts. This significantly reduces the server’s process-
ing overhead. Enabled by default since PHP 5.5.0 [7], OPCache
plays a vital role in minimizing response time in PHP-based web
applications.
PHP JIT compilation. Officially introduced in PHP 8 and subse-
quent versions, PHP Just-In-Time (JIT) compilation acts as a com-
plementary optimization feature alongside PHP OPCache. While
OPCache excels in storing and reusing precompiled OPCode, JIT
introduces dynamic compilation that translates PHP OPCode into
machine code just before execution. This dynamic compilation,
distinct from the prior interpretation of OPCache execution, adds a
new layer of optimization with the resulting machine code cached
for subsequent executions. Due to the relatively high cost of com-
pilation, PHP JIT is typically applied to hot code that is repeatedly
executed, such as loops. Therefore, the expense of JIT compilation
is generally compensated, resulting in notable performance gains.
Database interactions. The majority of web applications fre-
quently interact with database systems during their execution. In
PHP-based web applications, such interactions are achieved using
several PHP interpreter extensions, e.g., MySQL andMySQLi, which
expose a set of APIs (i.e., PHP built-in functions) for database oper-
ations. The extensions also define several internal data structures
to maintain these operations.

In the PHP ecosystem, a web request typically triggers the initi-
ation of a database connection, allowing the application to interact
with the corresponding database system. The interactions usually
involve multiple steps. We use a simplified example in Figure 1 to
demonstrate the four steps of the database operations.

• Step 1 : mysqli_connect (line 5). This step initiates the data-
base connection given the configuration of the database, e.g.,
hostname, database user name, and password, etc.

• Step 2 : mysqli_query (line 13). This step executes a SQL
query that reads data from the database, e.g., by using SELECT
statements. Other SQL queries can update the data using state-
ments of other types, e.g., UPDATE, SET, etc. The execution of
mysqli_query usually does not fetch the actual data from the
database but just returns query results in a special PHP internal
object—mysqli_result. The object represents the result of a
query, e.g., the number of rows and fields, and also encompasses
an active connection to the database. The object is necessary for
the actual data fetching in the next step.

• Step 3 : mysqli_fetch_assoc (line 16). This step fetches data
from the database according to the mysqli_result object,
e.g., the query results and the established connection. Besides
mysqli_fetch_assoc, MySQLi provides many other PHP built-
in functions for data fetching, e.g., mysqli_fetch_row that re-
trieves only the next row, etc.

• Step 4 : data uses (line 18). This step processes and uses data
fetched from the database.

As stated above, dependencies exist among these steps. Specifi-
cally, a database connection is fundamental for executing the sub-
sequent operations, i.e., queries and fetch operations, and data
fetching relies on the result of queries. It is worth noting that in
PHP, the database connection is not persistent across requests by

1 <?php
2 /* vulnerabilities/sqli/source/low.php */
3
4 // (1) establish connection
5 if(!@($GLOBALS["___mysqli_ston"] = mysqli_connect(...))) {
6 // error handling
7 ...
8 }
9
10 $id = $_REQUEST["id"];
11 $query = "SELECT first_name, last_name FROM users WHERE user_id = ’$id’;";
12 // (2) execute an SQL query and return mysqli_result object
13 $result = mysqli_query($GLOBALS["___mysqli_ston"], $query);
14
15 // (3) fetch data by row from mysqli_result object;
16 while($row = mysqli_fetch_assoc($result)) {
17 // (4) process and use the database data
18 $first = $row["first_name"];
19 ...
20 }

Figure 1: A simplified example.

default,1 but instead terminates automatically after the completion
of a request. This also provides a clean and isolated environment for
each session, ensuring the stability and security of web applications.

2.2 Web Application Fuzzing

Fuzzing is recognized as an effective method for identifying vulner-
abilities, and has been widely adopted for testing web applications.
Web application fuzzing techniques can be broadly categorized
into two types—black-box and grey-box—based on the availabil-
ity of internal knowledge about the target applications. Black-box
web application fuzzers, such as Enemy of the State [18], Black-
Widow [19], and Burp Suite [3], identify vulnerabilities by injecting
random payloads and observing the execution results. On the other
hand, grey-box fuzzers like WebFuzz [40], Witcher [39], and At-
ropos [20] assess code coverage through various instrumentation
techniques to guide the fuzzing process.

Recent advancements in web application fuzzers enhanced their
performance through the incorporation of novel vulnerability de-
tection strategies. For instance, Witcher and Atropos employ Fault
Escalation, which treats parsing errors at critical sink functions
as potential bugs or vulnerabilities [20, 39]. This is because well-
formed (legitimate) inputs normally would not trigger such errors.

2.3 System Cache

In computing systems, the cache is a hardware or software compo-
nent that stores frequently accessed data in a location closer to the
processor, allowing for faster access. When the CPU needs to read
or write data, it first checks the cache. If the data is found (cache
hit), it can be quickly retrieved or updated, eliminating the need
to access the slower main memory or other data storage. Other-
wise (cache miss), the CPU retrieves the data, and stores it and the
surrounding data blocks into the cache for future use.

There exist three categories of caches: 1) hardware cache, which
is built into the hardware components such as the processor or
memory controller, 2) in-network cache, which is deployed within
a network infrastructure for intercepting and caching network
requests and responses, and 3) software cache, which is usually

1PHP offers support for persistent connections [8] but it is not widely adopted in
practice.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Penghui Li and Mingxue Zhang

Table 1: Top 5 costly functions in WordPress, ranked by exclusive

execution time.

Func. Name % Excl. Time

curl_exec 41.3%
mysqli_query 29.7%
WP_Theme_JSON::compute_style_properties 1.0%
apply_filters 1.0%
mysqli_connect 0.7%

Table 2: Top 5 costly functions in phpBB3, ranked by exclusive exe-

cution time.

Func. Name % Excl. Time

phpbb\db\driver\mysqli::sql_query 35.7%
phpbb\class_loader::load_class 4.0%
phpbb\db\driver\mysqli::sql_connect 4.0%
phpbb\cache\driver\file::_read 2.6%
Composer\Autoload\includeFile 2.1%

implemented as part of the software code [43]. Modern cache mech-
anisms design various cache invalidation strategies to mark the
cached data as outdated due to changes in the underlying data
source. They also support cache eviction for removing data from
the cache to make room for new data. The choice of invalidation and
eviction policies depends on the specific development requirements
and the characteristics of cached data, with the goal of maximizing
performance gains.

3 Motivation

This work is inspired by the observation that web applications
frequently entail expensive data access during their execution. In
this section, we present an empirical study to analyze the execution
dynamics of web applications, and introduce the main insight.

3.1 Understanding Execution Dynamics

Function-level monitoring via XHProf. We utilized XH-
Prof [34] on the web server to track the execution time of web
applications. XHProf offers function-level performance metrics. A
function or method is identified by its name, which includes both
the class name and the function name, e.g., class1::func1. More
specifically, XHProf measures the execution time of each invoked
function in various metrics. We list several relevant metrics below:
• Function call count. A function can be called multiple times, e.g.,
using different arguments. Measurement results of calls to the
same function are accumulated together. XHProf counts the
number of calls for each function.

• Inclusive execution time. The total time spent on calling a function.
This includes the time spent within the function itself and in
functions called by it.

• Exclusive execution time. Different from inclusive execution time,
this metric excludes time spent in other functions called by a
target function. It helps to identify functions that consume a
significant amount of time themselves.

• Time proportion. For each function (identified by the function
name), XHProf computes the proportion of the inclusive/exclu-
sive execution time over the total request processing time.

Experiment procedures. We initiated the experiments by se-
lecting 6 widely deployed web applications as the targets. Due to
space constraints, we focus our discussion on the results of two
representative web applications with significant market share [41]:
WordPress 6.4.2 [11] and phpBB3 3.3.11 [10]. More comprehensive
results and analyses are available in the evaluation section (§5). We
installed the selected web applications on an Apache2 HTTP server
running PHP 8.2, with PHP OPCache enabled by default. We also
set up the associated database for each application on the same
machine. To profile the application performance, we employed a
fuzzer called Black-Widow [19] to generate the workload and drive
the applications. We chose Black-Widow for our study due to its ad-
vancements in thoroughly navigating the entire applications. While
other fuzzers or profilers are applicable, our study focuses on under-
standing execution dynamics rather than detecting vulnerabilities.
We ran Black-Widow for a duration of two hours.

As XHProf produces per-request results, and execution may
vary across requests, we aggregated the measurement results of all
requests to generate the performance profile of an application. This
is done by enhancing XHProf’s built-in aggregating feature.
Costly function calls. In our study, we observed that certain
functions exhibit significantly higher execution costs. The top five
most expensive functions in WordPress and phpBB3 are presented
in Table 1 and Table 2, respectively, To understand the performance
bottlenecks, we ranked the functions based on their exclusive exe-
cution time, which stands for the proportion of exclusive execution
time within the request processing time shown in the tables. We
opted not to use inclusive execution time because it assumes that
the caller functions must be more costly than the callees. It may not
be as meaningful in identifying bottlenecks in our specific context.

Given the large number of functions (i.e., in the scale of hun-
dreds of thousands) in both applications, the majority of func-
tions took less than 0.1% of the overall exclusive execution time
of all functions. However, some functions stood out from the
others. As illustrated in Table 1, the curl_exec function ac-
counted for 41.3% of the execution time of WordPress. Similarly,
the mysqli_query function consumed 29.7% of the execution time.
In phpBB3, phpbb\db\driver\mysqli::sql_query took 35.7%
of the execution time.

In Table 3, we summarize these functions into four categories: 1)
database functions for managing database data, 2) network func-
tions for accessing network data, 3) page loader for processing or
rendering web content, and 4) others for everything else. As shown
in the table, the function calls in the first two categories account for
78.5% and 49.5% of execution time as for WordPress and phpBB3,
respectively. This observation is similarly reflected in other web
applications.
Repeated execution of costly calls. To delve deeper into the
execution of these costly function calls, we conducted an analy-
sis of their arguments. We replayed the above profiling requests
and recorded the function arguments. We did not record such in-
formation in the measurement above to prevent it from adding
unnecessary overheads to the results. Our findings revealed that

FuzzCache : Optimizing Web Application Fuzzing Through Software-Based Data Cache CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 3: Exclusive execution time by function categories.

Function Category

% Excl. Time

WordPress phpBB3

Database 35.1% 43.9%
Network 43.4% 5.6%
Page loader 3.2% 7.3%
Others 18.3% 43.2%

many of these function calls are not only expensive but also re-
dundant and repeated. For instance, in WordPress, the curl_exec
function fetched data from https://api.wordpress.org/core/version-
check/1.7/?version=6.4.2&php=8.2.13 for 10 times out of the 25 calls.
The database query SELECT wp_posts.* FROM wp_posts was
redundantly executed hundreds of times. Among these repeated
data queries, data read through SELECT account for over 90%. This
raises concerns about the potential inefficiencies and suggests op-
portunities for optimization in the handling of these function calls.
Note that such an observation generally applies to many other web
applications beyond the ones studied in this section.
Output of repeated calls. We further checked the return value of
the costly function calls. We consider an output of a function call to
be repeated if it matches a previous call’s output. Our analysis con-
firmed that the results obtained from these repeated function calls
remain largely identical when the same arguments are provided.
In particular, we have observed repeated outputs in both database
functions and network functions. Our initial investigation revealed
that roughly 68% (87%, resp.) of database (network, resp.) function
calls exhibit previously seen outputs. This is an expected behav-
ior, as calls to the curl_exec function in WordPress, for example,
would fetch the same data if the same URL is given. For data read
operations from the database, identical results are also returned
for most of the situations. The consistency in outcomes strongly
suggests that the repeated calls might indeed be redundant and will
not affect the runtime states of an application. Addressing such
redundancy presents an opportunity for more efficient resource
utilization, and has great potential in enhancing the overall system
performance.

It is important to note that while the majority of repeated calls
(with the same arguments) yield identical results, exceptions were
observed for certain database query function calls. This discrep-
ancy arises due to the updates of associated data. For instance, two
repeated queries for reading data from a database may yield differ-
ent results, if an update query occurs in between, modifying the
fetched data. Consequently, all subsequent queries would return
the updated data.
In summary, our analysis highlights two categories of function
calls that prove to be costly: database functions and network
functions. More importantly, calls to these functions are often
repeated and redundant, resulting in the generation of identical
outputs across multiple executions.

3.2 Insight

Our analysis has revealed several expensive functions that incur
high computational costs, and they are usually called redundantly.
Our research goal is to develop techniques to optimize these costly

function calls, especially for web application fuzzing. A naive so-
lution might be to directly eliminate these function calls. How-
ever, this is impractical as removing them would pose significant
challenges in maintaining the correct functionalities. For instance,
many web applications depend on database data to function [13].
Simply removing database functions would prevent fuzzers from
thoroughly testing all functionalities of an application.

Instead, we advocate for the implementation of a software-based
caching mechanism to avoid repeated execution of costly functions.
This approach involves caching the results of resource-intensive
function calls, and storing them in a more cost-effective location.
It proves advantageous because it is less expensive than direct
data fetching. By doing so, we maintain the functionalities while
alleviating the computational burden associated with frequently
invoked, resource-intensive functions.

To the best of our knowledge, we are the first to propose such a
software-based cache solution to enhance the performance of web
application fuzzing. To make our solutions practical and deploy-
able, we have several design goals. First, the mechanism should be
transparent to developers so that no change of implementation is
needed for the developers to enable the cache for testing purposes.
Second, the cache mechanism should be easy to set up for security
analysts, allowing for a seamless integration into existing testing
frameworks.

4 FuzzCache

In this section, we present the design of FuzzCache, a software-
based cachemechanism. FuzzCachemaintains the cache in a query-
centric manner where each cache entry corresponds to a query for
database data. At such a granularity, repeated query execution
could be mitigated. For network data, a cache entry corresponds
to the network request URL. Furthermore, FuzzCache is the first
to leverage the latest PHP JIT to accelerate code execution during
fuzzing. FuzzCache is transparent to web application developers,
allowing them to enable the software-based cache without modi-
fying their code. By deploying FuzzCache on the server side, all
existing fuzzers can be applied for the testing.

In the remaining section, we first describe the technical chal-
lenges in implementing FuzzCache (§4.1). We then demonstrate
how FuzzCache caches data fetched from databases (§4.2) and via
network requests (§4.3). We then explain how we integrated JIT
compilation with FuzzCache (§4.4) and how FuzzCache can be in-
tegrated with existing fuzzers (§4.5). Finally, we provide a minimal
working example (§4.6) and describe the implementation details
(§4.7).

4.1 Challenges and Solutions

FuzzCache entails addressing several technical challenges.
C1: Non-persistent database connection. As outlined in §2.1,
PHP-based web applications retrieve data from the database
through multiple steps, among which dependencies widely exist.
Based on our empirical experiments, Step 1 and Step 2 prove
to be resource-intensive, accounting for approximately 50% of the
total execution time. To mitigate the impact of repetitive database
connections and queries, a natural thought is to cache the queried
results. However, Step 2 returns a mysqli_result object as the

https://api.wordpress.org/core/version-check/1.7/?version=6.4.2&php=8.2.13
https://api.wordpress.org/core/version-check/1.7/?version=6.4.2&php=8.2.13

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Penghui Li and Mingxue Zhang

query result, which encompasses active database connections. This
means the query results cannot be directly cached, as the database
connections do not persist across multiple runs.

Solution: We propose to alternatively cache the data fetched
by Step 3 , instead of the query result from Step 2 . This is still
insufficient for achieving optimal cache efficiency, however, be-
cause this can only avoid the repeated execution at Step 3 , where
the expensive connection and query have already been finished.
Therefore, we design novel algorithms to reschedule the multi-step
data fetching to effectively eliminate the repetitive and expensive
connection and query execution.
C2: Cache invalidation caused by related queries. As we men-
tioned in §3.1, redundant function calls with the same arguments
might still return different results due to updates from related
queries. This introduces the risk of cached data becoming invalid.
The complexity of database operations (i.e., SQL queries) makes
it challenging to determine whether a query affects cache entries
associated with another query. We need to design an effective way
to invalidate the cached data.

Solution: Instead of developing a precise and accurate cache
invalidation algorithm, we design a more coarse-grained approach
at the table granularity. The key idea is to associate each cache entry
with the tables, on which the corresponding queries operate. This
is feasible because we can identify the table names by analyzing
the queries without executing them. The cache entries can then
be invalidated when the associated table(s) get updated by another
query.
C3: Cross-process data maintenance. In PHP web applications,
each request is executed in a separate process or thread where
strict data isolation is enforced. Meanwhile, fuzzing trails also run
in separate processes. Therefore, the data cache cannot be stored in
memory as it will not persist after the process or thread terminates.
Cross-process data maintenance must be implemented to enable
effective data caching, especially during fuzzing.

Solution: Inspired by the design of OPCache, we utilize the inter-
process shared memory in the PHP interpreter for our database
and network data caches. Supported in PHP 5.3.0 and subsequent
versions, the shared memory allows multiple processes to access
the same data.
C4: Compatibility with existing fuzzers. FuzzCache serves
as a complementary component to existing fuzzers by improving
their efficiency. Nonetheless, the data cache may break a recent SQL
injection vulnerability detection mechanism that performs syntax
checks during the query parsing stage. As repetitive queries will
not be parsed and executed if they get cached, FuzzCache must be
tailored to provide full compatibility with existing fuzzers, which
is difficult.

Solution: We additionally provide a plugin in FuzzCache that
proactively identifies SQL injection vulnerabilities. It utilizes the
latest Fault Escalation technique by implementing a lightweight
syntax checker (see §4.5).

4.2 Database Data Cache

FuzzCache adopts a query-centric caching strategy, where each
cache entry corresponds to a query. When the valid data corre-
sponding to a query already exists in the cache, the cached data

is returned for reuse. FuzzCache is designed to augment database
systems instead of implementing alternative storage for two rea-
sons. First, not all database data is used during dynamic fuzzing,
and caching all of it would be inefficient. Second, replacing the
database systems produces compatibility problems. For example,
an alternative storage system has to support all the query function-
alities and features, e.g., to be able to execute queries and fetch data
accordingly. This is difficult, as it requires significant engineering
effort to re-implement all SQL functionalities.

The database queries can be classified into two categories: 1) read
queries (e.g., SELECT) that read data from the database, and 2) write
queries (e.g., UPDATE and INSERT) that write data into the database.
FuzzCache determines the categories of the queries by analyzing
the query strings, i.e., matching keywords like SELECT and provides
support for both of them. The performance gains mainly lie in read
queries, where repeated and expensive computations are avoided.
The write queries will always execute as they might update the
database and thus invalidate the cached data. We now describe how
the two types of queries execute with the database cache, and in
particular, how FuzzCache reschedules the data fetching steps to
address C1.

4.2.1 Data Read. The workflow of a read query is presented in
Figure 2. As mentioned earlier, we cache the fetched data instead
of the query results in Step 2 . Under such a design, we propose
two main techniques, namely lazy connection and data prefetch, to
avoid repetitive, expensive database connection and query execu-
tion. In particular, FuzzCache postpones the database connection
from Step 1 and establishes it on-demand, e.g., on cache miss.
FuzzCache uses the query strings for cache lookup and only exe-
cutes the expensive operations when necessary. Data is prefetched
and stored to the cache without waiting till Step 3 . The whole pro-
cess is powered by a lightweight dynamic data dependency analysis
that allows flexible replay of related operations.
Cache lookup. FuzzCache computes the hash value of a query
string and searches for a match in the cache. If no match is found,
or the matched cached entry is invalid (more details in §4.2.2),
FuzzCache fetches data from the database and stores it in the
cache.

On a cache miss or invalid cache data, FuzzCache needs to
perform the database connection, execute the query, and fetch data
to the cache. We illustrate the process using the example in Figure 1.
• In Step 1’ (line 5), FuzzCache would not initiate a database
connection right away but rather postpones the connection to
the data query stage (Step 2’).

• In Step 2’ (line 13), FuzzCache realizes there is the need for
expensive data fetch from the database. It then performs the
lazy connection to establish a database connection, which was
originally supposed to be done in Step 1 . This lazy connection
strategy allows FuzzCache to cut out unnecessary connections,
which can be costly.
Subsequently, FuzzCache performs the required query and ob-
tains a mysqli_result object as the query result. After that,
FuzzCache prefetches all the associated data immediately. We
denote this as data prefetch as opposite to the original execution
flow, where the data fetch is done at Step 3 (line 16).

FuzzCache : Optimizing Web Application Fuzzing Through Software-Based Data Cache CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Search Database

Cache

Hit

Miss

Data Retrieval

from Cache

Database Connection

Data Prefetch

Cache Store

Data

Process

Lazy Connection, Query, and Data Caching Data Fetching Data Process

Data

CachedDependency Tracing

Check Dirty Bit

Set Not

Figure 2: The workflow of a read query with cache enabled.

Prefetching all data from the query result has two benefits.
First, it increases the cache hit rate. Note that the result data
can be fetched (partially) in various ways. For example, one
might use mysqli_fetch_all to fetch all result rows, and use
mysqli_fetch_fields to fetch the column fields. Saving the
complete data instead of the partial ones enables cache hits in all
subsequent partial fetches. Second, knowing what partial data
to fetch in advance at Step 2’ is difficult, and this design avoids
"predicting" the subsequent partial fetch of Step 3 .

• In Step 3’ (line 16), the web application directly retrieves result
data from the database cache. Keeping the data fetching stage
also ensures the modifications are transparent to developers and
provides backward compatibility.

• In Step 4’ (line 18), the web application processes the fetched
data as usual.

Dynamic data dependency analysis. The lazy connection and
data prefetch are powered by a lightweight data dependency anal-
ysis. In particular, at the query stage, the connection information
(e.g., server name, database, and user credentials) is no longer avail-
able. Similarly, in Step 3’ , FuzzCache needs to determine which
data to fetch from the cache, for which the table name and query
string are needed.

To this end, FuzzCache employs a dynamic data dependency
analysis by hooking these database operations. It dynamically
records all SQL function calls, including their arguments, in their
execution order. By analyzing the traces, FuzzCache identifies the
dependencies among the operations, e.g., Step 2’ depends on Step
1’ . FuzzCache traverses the traces and can then replay these op-
erations to establish the database connection, execute the query,
etc.
Cache structure. We carefully design the structure of our query-
centric database cache, as depicted in Figure 3. Each cache entry
is indexed with a key, which is computed as the hash value of the
query string. It also maintains the corresponding data segment that
is first fetched from the database. Additionally, each entry contains
a field of table names denoting which tables the data is associated
with and a dirty bit denoting if the data segment is valid. Next,
we will describe the cache invalidation procedure using the table
names and dirty bit.

4.2.2 Data Write. As opposed to read queries, write queries do not
fetch data from the database but update the date there. Therefore,

Query Data Segment Table Dirty Bit

hash(𝑞0) data0 hash(t0) 0

hash(𝑞1) data1 hash(t1) 1

… … … …

hash(𝑞𝑛) datan hash(tn) 0

query(UPDATE t1)

Figure 3: The structure of database cache in FuzzCache.

FuzzCache does not alter the execution of write queries, i.e., the
data will be directly updated in the database. In Step 2’ , when
FuzzCache realizes the query string is for updating, FuzzCache
directly issues it together with the database connection. However,
such updates might also invalidate the cached data. We need to
design cache invalidation techniques.

4.2.3 Cache Invalidation. Due to the complexity of SQL queries,
it is difficult to precisely correlate the updated data records with
the cache entries, as discussed in C2. To address the challenge,
we design a coarse-grained correlation at the table granularity.
In particular, for each cache entry, FuzzCache analyzes the cor-
responding query string to identify the associated table names,
and records them in a separate column. When executing the write
queries, FuzzCache determines which tables are updated. It then
uses the table names as the key to invalidate the associated cache
entries, by setting the dirty bit as 1. A new data fetch from the
database could clear the dirty bit. By invalidating cached data at the
table granularity, FuzzCache strikes a balance between runtime
efficiency and data correctness.

4.2.4 Cache Eviction. Unlike in conventional hardware cache
mechanisms, where the cache size is often restricted due to hard-
ware constraints, our software-based design provides the flexibility
to allocate a larger cache. The expanded cache size allows for the
accommodation of a broader range of data and potentially enhances
the testing efficiency. In the current design, FuzzCache is equipped
with a large cache of 100MB. The cache size is empirically decided
based on the observation that the default database for dynamic
web application testing is usually small or even blank. A cache
of 100MB is sufficient to accommodate most testing requirements.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Penghui Li and Mingxue Zhang

Request Network Data Expiration Time

hash(𝑟𝑒𝑞0) net_data0 time0

hash(𝑟𝑒𝑞1) net_data1 time1

… … …

hash(𝑟𝑒𝑞𝑛) net_datan timen

Figure 4: The structure of network data cache in FuzzCache.

In rare cases, when a higher demand is observed, FuzzCache per-
forms cache eviction by removing randomly selected data segments
from the cache. Our experiment results demonstrate that random
eviction does not incur frequent cache misses. We leave it as a
future work to explore other viable eviction strategies.

4.3 Network Data Cache

In order to avoid repetitive network requests, FuzzCache addition-
ally incorporates a cache for network data. As illustrated in Figure 4,
data fetched from the network is cached at locations indexed by the
hash value of request URLs. FuzzCache could include an optional
expiration time field to denote when the cache entry is set to expire.
The expiration time is determined based on a configurable param-
eter known as time-to-live (TTL), which represents the duration
until the cache entry expires as time progresses from the current
time. This strategic approach facilitates meticulous management of
the temporal validity of cached data before refreshing or retrieval
from the original source. However, according to our empirical study,
the network data usually does not change during testing, i.e., the
same data is always returned. Therefore, we design the expiration
time as an optional field. Our experiment results in §5.5 prove that
the TTL value does not affect fuzzing capability.

To request data from the network, FuzzCache uses the request
URLs for a cache lookup, checks the TTL, and directly retrieves the
data if cached and not expired. Otherwise, it performs the request
and stores the data in the cache. The network data cache also applies
the same random eviction strategy.

4.4 Just-In-Time Compilation

In addition to data caches, FuzzCache also enables caches for PHP
code, i.e., OPCache. To the best of our knowledge, Atropos [20] is
the only work explicitly mentioned to enable OPCache for fuzzing.
Beyond OPCache, FuzzCache also aims to enable JIT compilation
atop OPCache to further boost fuzzing efficiency. Unfortunately,
JIT was first officially introduced in PHP 8.0, whereas a plethora
of web applications are implemented in PHP 7 [42], with various
features deprecated in the new release. We thus propose an auto-
matic approach to porting PHP 7 applications to PHP 8, so that
FuzzCache can be applied in the majority of applications.

To resolve the incompatibility between PHP 7 and 8, we
use the PHP-Parser by Nikic [31] to parse PHP source code
into abstract-syntax trees (ASTs). Deprecated AST patterns
are identified, and replaced with AST of their alternatives
in PHP 8. For instance, the deprecated pg_errormessage()
calls will be replaced with pg_last_error() calls, and
enchant_dict_add_to_personal() are replaced with

enchant_dict_add(), etc. We acknowledge that the trans-
formation may not always succeed, given the significant
differences between the PHP standards. However, it is not our main
focus to resolve the incompatibility issues, and JIT compilation
serves as an additional feature of FuzzCache. Instead, we attempt
to rewrite the applications in the best effort manner, and our
experiments demonstrate that the database and network caches
are already sufficient to improve fuzzing efficiency. We believe a
growing number of web applications will be migrated to PHP 8 in
the future.

PHP provides various configurable options, denoted as op-
cache.jit* in the PHP manual [35]. We attempted different options
to explore their efficacy in fuzzing. Our initial investigations pin-
pointed two options amongmany others that would have significant
impacts on performance.
• Trigger. This setting governs when code undergoes JIT compila-
tion. Options include compiling all functions upon script load,
triggering compilation on first execution, after profiling specific
requests, or dynamically during profiling and tracing, etc.

• Optimization level. This parameter dictates the extent and
methodology of JIT compilation. It offers configurations such as
minimal JIT, type inference-based compilation, call graph-based
optimization, whole-script optimization, etc.

Following a comprehensive evaluation, we opted for a configuration
that JIT-compiles code upon script load and optimizes the entire
script. We observe that this configuration generally yields favorable
results.

We have attempted integrating JIT with script preload function-
alities, and enabling the JIT compilation of specific code before
analysis. However, the enhancement is not significant for coverage-
oriented fuzzing tasks, as there may not be such "hot" scripts that
are repeatedly executed. Nevertheless, this might be beneficial in
scenarios like directed fuzzing, where some expensive and opti-
mizable code could be identified, e.g., through a lightweight static
analysis.

4.5 Integration with Existing Fuzzers

FuzzCache defines a set of SQL functions and network request
APIs that cache data, and automatically rewrites web applications
to replace the corresponding function/API calls. The modifications
are transparent to developers, and generally do not interfere with
existing fuzzers.

As described in C4, one exceptional case is the recent SQL in-
jection vulnerability detection techniques, which identify query
parsing errors as the indicators of the vulnerabilities [20, 39]. As
the web application (database system) will not execute the queries
if the associated data is cached, the vulnerabilities may not be re-
liably detected. To enable SQL injection vulnerability detection,
we implemented a lightweight syntax checker, which parses all
incoming queries, according to MySQL specifications for validation.
Any queries flagged as syntactically invalid, indicating a SQL injec-
tion, are excluded from further processing by the cache component,
because invalid queries are simply incompatible with the database
system. This allows us to identify the vulnerabilities and record
the corresponding input requests (PoCs) at run time, providing

FuzzCache : Optimizing Web Application Fuzzing Through Software-Based Data Cache CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

additional support of SQL injection detection for all fuzzers by
default.

4.6 A Working Example

We now use a weather forecast app as an example to demonstrate
how the cache mechanism works.
Step 1: The user logs in by submitting her credentials. The
application authenticates users through query 𝑞0: SELECT * FROM
users WHERE username = ‘u0’ AND password = ‘p0’. To
execute 𝑞0, FuzzCache first performs a cache lookup using
ℎ𝑎𝑠ℎ(𝑞0), and will encounter a cache miss since this is the first
executed query. Therefore, FuzzCache checks the dynamically
recorded SQL function calls, and identify the database connection
and query to execute. It then establishes the database connection,
executes 𝑞0, fetches all associated from the database, and caches
them at location ℎ𝑎𝑠ℎ(𝑞0), where ℎ𝑎𝑠ℎ(𝑞0) indexes the hash map
(Figure 3). The table name 𝑢𝑠𝑒𝑟𝑠 is also recorded.
Step 2: The user updates her password. The application
updates table users by executing query 𝑞1: UPDATE users
SET password = ’p1’ WHERE user_id = ’u0’. As described
in §4.2, 𝑞1 will be directly executed and trigger FuzzCache to set
the dirty bit for cache entries associated with table users.
Step 3: The user logs in using new credentials. The appli-
cation executes a new query 𝑞2: SELECT * FROM users WHERE
username = ‘u0’ AND password = ‘p1’ and stores the asso-
ciated data to the cache. Subsequent login attempts will no
longer require actual database connection and query execution,
as FuzzCache can extract the table name and query string from
the dependency logs, and locate the cache entry using ℎ𝑎𝑠ℎ(𝑞2).
Step 4: The application requests forweather forecast informa-

tion. Theweather data is fetched by issuing a request to an external
API: GET https://api.weather.com/data/weather?city=
c0&date=d0&apikey=k0. This causes FuzzCache to cache the re-
trieved data at ℎ𝑎𝑠ℎ(“ℎ𝑡𝑡𝑝𝑠 : //𝑎𝑝𝑖.𝑤𝑒𝑎𝑡ℎ𝑒𝑟 .𝑐𝑜𝑚/...”). FuzzCache
can optionally set a TTL (e.g., 20 minutes) for the cache entry to
keep the cache up-to-date. Subsequent requests to the same URL
will then be eliminated by retrieving data from the cache.

4.7 Implementation

We implemented the main functionalities of the software-based
cache as a library for PHP-based web applications. The library
manages the cache segments on inter-process shared memory, ac-
cording to the structure in Figure 3 and Figure 4. It invokes the
shmop extension of the PHP interpreter and the associated APIs
for cache reads and updates. FuzzCache serializes the data before
storing it to the cache and deserializes it after data retrieval from
the cache.

We transparently replaced the database and network function
calls to enable our cache mechanism, and ported web applications
in PHP 7 to PHP 8. To do this, we utilized the PHP-Parser [31]. It can
parse PHP source code into abstract syntax trees, where the code
statements or expressions are represented in a hierarchical structure.
We utilized the NodeVisitor to traverse the tree and apply code
changes by replacing the AST nodes. Finally, the updated tree can

be converted back into PHP source code, achieving automated code
changes.

5 Evaluation

In this section, we present a comprehensive evaluation of
FuzzCache. In particular, we aim to answer the following ques-
tions.
• How can FuzzCache benefit existing web application fuzzers?
• How effective are the data cache mechanisms?
• What can PHP JIT bring to web application fuzzing?

5.1 Experimental Setup

Dataset. In order to facilitate a comprehensive evaluation, our
objective is to construct a diverse web application dataset. Drawing
inspiration from previous research [20, 39], our dataset comprises
three groups of applications, as shown in Table 4.
• Microtests. Like Witcher [39], we introduced a benchmark con-
sisting of five PHP scripts. Each script is designed to exercise the
data cache mechanism by performing basic database operations
or network requests.

• Ground-truth test suites. We included existing test suites meticu-
lously crafted to incorporate web vulnerabilities. The test suites
contain both artificial vulnerabilities and real-world vulnerabil-
ities, empowering a comprehensive evaluation of FuzzCache
under various conditions. In particular, we included Damn Vul-
nerableWeb Application (DVWA) [5] and buggy web application
(bWAPP) [4], which were also used in [20].

• Realistic web applications.We also incorporated real-world web
applications with known vulnerabilities (i.e., in outdated ver-
sions). This helps understand how FuzzCache can work on real-
world applications, especially with real-world workloads.
We manually installed each web application in a container and

initialized the databases on the default settings. During this pro-
cedure, we created user accounts and configured their credentials
on the web applications. This setup will facilitate automated au-
thentication during subsequent testing. It is worth noting that the
containers used for the experiments operate on Ubuntu 22.04, using
4GB of memory.
Evaluated fuzzers. In our evaluation, we focused on assessing the
capabilities of FuzzCache in conjunction with two state-of-the-art
fuzzers, namely Black-Widow [19] and WebFuzz [40]. We selected
the two fuzzers because they are among the most representative
black-box and grey-box web application fuzzers. Specifically, Black-
Widow tests web applications in a black-box manner, and places
particular emphasis on data-driven navigation. It takes website
URLs as input to the fuzzing process. WebFuzz is a grey-box web
fuzzer, targeting stored cross-site scripting vulnerabilities. It instru-
ments the source code of web applications to record code coverage,
which is used as the feedback for fuzzing. It is important to note
that FuzzCache is inherently adaptable to other web application
fuzzers. For example, Witcher [39] proposed by Trickel et al. and
Atropos [20] by Güler et al. could be integrated with FuzzCache
with limited effort.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Penghui Li and Mingxue Zhang

Table 4: Evaluation results of 24-hour experiments. BW, BW+, WF, and WF+ denote Black-Widow, Black-Widow+FuzzCache, WebFuzz, and

WebFuzz+FuzzCache, respectively.

ID Application

Coverage (%) Throughput XSS Detection Hit Rate (%) Peak Usage (MB)

BW BW+ WF WF+ BW+ WF+ BW BW+ WF WF+ BW+ WF+ BW+/WF+

1 Microtests 100 100 100 100 9.6× 10.4× 5 5 3 5 88.1 83.5 1

2 DVWA 55.9 78.7 60.3 89.1 5.4× 6.1× 3 4 2 2 76.1 86.2 3
3 bWAPP 45.1 66.2 53.3 68.2 4.9× 3.3× 2 4 1 2 93.7 85.8 5

4 WordPress 28.3 39.9 34.1 54.2 2.3× 1.8× 0 0 0 0 86.7 79.1 100
5 phpBB3 39.3 57.5 56.5 68.1 2.1× 2.7× 1 1 0 0 92.4 85.7 10
6 OpenEMR 48.0 64.4 69.3 74.3 4.5× 3.9× 4 6 1 4 86.4 77.3 6
7 WeBid 41.6 55.0 45.8 62.4 3.2× 2.9× 0 0 0 1 95.9 91.2 4
8 Joomla 41.3 49.3 39.9 50.6 2.4× 1.8× 0 0 0 0 77.4 70.3 8
9 WackoPicko 58.9 65.4 68.1 74.6 3.9× 2.5× 0 1 0 0 93.3 95.6 5

Mean/Sum* 48.0 62.1 55.9 69.8 3.8× 3.3× 15* 21* 7* 14* 87.6 84.1 -

5.2 Code Coverage

Code coverage is a vital metric for assessing the efficacy of fuzzing.
In our experiments, we not only ran vanilla Black-Widow and Web-
Fuzz but also integrated our FuzzCache with them to evaluate the
performance improvements. The tools underwent five runs with
a 24-hour time limit for each application. We captured the code
coverage using XDebug [12], as also suggested in Atropos [20]. The
final coverage results after 24-hour runs are presented in Table 4,
where we use BW, BW+, WF, and WF+ to represent Black-Widow,
Black-Widow+FuzzCache, WebFuzz, and WebFuzz+FuzzCache,
for brevity. We calculated code coverage as the proportion of cov-
ered basic blocks across the entire web application. As a common
practice, we computed the average code coverage of a tool as the
geometric mean of coverage across all tested web applications.

The results clearly highlight that FuzzCache could significantly
improve the exploration efficacy of the fuzzers. In the case of
Microtests, which is characterized by simplicity in its logic and
functionalities, all tools covered all code, irrespective of whether
FuzzCache was enabled or not. This is because the 24-hour dura-
tion is adequate for a comprehensive exploration of such a sim-
ple application. However, for web applications in the second and
third groups, tools with FuzzCache enabled demonstrated the po-
tential to achieve significantly higher code coverage. Specifically,
FuzzCache improved the Black-Widow coverage by an average
of 29.4%, with potential improvements of up to 42%. Similarly, it
showed the capability to enhance the coverage ofWebFuzz by 24.9%,
reaching up to 58.9%.

FuzzCache not only helps achieve an overall higher code cover-
age, but also at a much faster rate. Figure 5 depicts the code coverage
achieved over time for real web applications in the second and third
groups. It is evident that in both black-box and grey-box scenarios,
FuzzCache consistently accelerates the increase of code coverage.
For example, in OpenEMR, the line of Black-Widow+FuzzCache
stabilizes at around the 8th hour, while the vanilla Black-Widow
stabilizes at around the 13th hour.

5.3 Throughput

By eliminating unnecessary and expensive data access, FuzzCache
contributes to an improvement in fuzzing throughput, i.e., more

exercised test cases per unit time. Therefore, we conducted mea-
surements on the throughput of the tools, specifically focusing
on the relative throughput before and after enabling FuzzCache
for Black-Widow and WebFuzz. The results are presented in the
columns BW+ and WF+ in Table 4. On average, FuzzCache signifi-
cantly enhanced fuzzing throughput by 3.8× and 3.3× compared to
vanilla Black-Widow and WebFuzz, respectively. This suggests that
a significantly greater number of test cases can be processed when
FuzzCache is enabled.

Additionally, as depicted in Table 4, we observed that FuzzCache
achieves more significant throughput improvement on Microtests.
This can be explained by the fact that Microtests contain a higher
proportion of optimizable code. Therefore, the improvement in
throughput is higher.

5.4 Vulnerability Detection

We further assessed how much FuzzCache could improve the vul-
nerability detection capability of Black-Widow andWebFuzz. Black-
Widow and WebFuzz are designed to identify XSS vulnerabilities,
and we present the XSS detection results in Table 4. Note that we
accumulated the number of unique vulnerabilities detected across
5 runs in the table. We define a unique vulnerability by the lo-
cation of the sink functions, regardless of the URLs to trigger it.
Specifically, FuzzCache could help identify 6 and 7 more vulner-
abilities when enabled atop Black-Widow and WebFuzz, respec-
tively. This proves the clear benefits of FuzzCache. FuzzCache
additionally implements the Fault Escalation technique to detect
SQL injection and command injection vulnerabilities. With the help
of it, Black-Widow+FuzzCache additionally identified 4 injection
vulnerabilities, and WebFuzz+FuzzCache identified 3. The results
demonstrate that FuzzCache is compatible with the latest vulner-
ability detection techniques, and is effective in improving their
vulnerability detection capabilities.

All vulnerabilities identified by the vanilla Black-Widow and
WebFuzz were successfully detected when further enabling
FuzzCache. However, several vulnerabilities in the ground-truth
dataset were still missed even when FuzzCache is enabled. We be-
lieve this accounts for the generic limitations of the fuzzers instead
of FuzzCache. For example, Black-Widow relies on its crawler to

FuzzCache : Optimizing Web Application Fuzzing Through Software-Based Data Cache CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

0 4 8 12 16 20 24
0

20

40

60

80

DVWA

0 4 8 12 16 20 24
0

20

40

60

80
bWAPP

0 4 8 12 16 20 24
0

20

40

60
WordPress

0 4 8 12 16 20 24
0

20

40

60

phpBB3

0 4 8 12 16 20 24
0

20

40

60

80
OpenEMR

0 4 8 12 16 20 24
0

20

40

60

WeBid

0 4 8 12 16 20 24
0

20

40

Joomla

0 4 8 12 16 20 24
0

20

40

60

80
WackoPicko

BW BW+ WF WF+

Figure 5: Code coverage (%) over time in 24-hour run. BW, BW+, WF, and WF+ denotes Black-Widow, Black-Widow+FuzzCache, WebFuzz, and

WebFuzz+FuzzCache, respectively.

construct the navigation graph. It could not find all (vulnerable) in-
terfaces that are the prerequisite for vulnerability detection, leading
to undetected vulnerabilities.

5.5 Understanding the Cache

In this section, we discuss the internals of the data cache mecha-
nisms from several aspects.
Time improvements. We investigated the performance differ-
ences caused by cache hits or misses. To do this, we randomly
sampled 100 data fetch requests from fuzzing workloads on realistic
web applications. For each data fetch request, we conducted 10,000
iterations and calculated the arithmetic mean of the data fetch
elapsed time. We measured the data fetch time in two situations:
1) cache hit, for which we enabled the cache and issued repetitive
requests to ensure the data is always served by our caches, and
2) cache miss, for which we disabled the cache so that the data
is served by the original data sources. On average, we observed
that enabling cache could enhance the data fetch performance by
around 15× to 20×.
Cache hit rate. A cache miss occurs when the data is not
stored in our software-based data caches, requiring the web ap-
plications to fetch the data externally. We calculated the cache
hit rate (#𝐻𝑖𝑡

#𝐻𝑖𝑡+#𝑀𝑖𝑠𝑠
) during fuzzing. The results are presented

in Table 4. The cache hit rate in web applications is consistently
high, averaging 87.6% and 84.1% in Black-Widow+FuzzCache and
WebFuzz+FuzzCache, respectively. This indicates that the majority
of data fetch operations can be efficiently served by our data caches.
Moreover, on the two fuzzers, FuzzCache presents a similar cache
hit rate.
Cache size and usage. In contrast to the stringent constraints
imposed by hardware in real-world production environments, our
software-based design allows for the use of larger caches. Rigorous
monitoring of cache usage was implemented throughout our ex-
periments. Notably, a 100MB of cache storage proved to be more
than adequate.

We list the maximum cache usage (peak usage) across runs in
Table 4. The results revealed that, across the majority of tested web
applications, the allocated cache storage remained underutilized
even after a prolonged 24-hour run, e.g., less than 10 MB was used.
A notable exception was in WordPress, where a higher demand of
cache size was identified around the 16th hour in one of the five
experimental runs. This anomaly was attributed to the creation
of new web contents (e.g., blogs), and subsequent storage of them
in the database, thereby eliciting distinct cache behaviors. We can
thus conclude that within the context of fuzzing, the cache size has
minimal impact.
TTL value. FuzzCache employs a cache invalidation strategy
to mark the database cache data as invalid, when other programs
update the corresponding database records. Although we did not
observe any update of the network data in our empirical study,
FuzzCache still provides an optional expiration time for the net-
work cache entries to indicate their validness. The expiration time
is configurable by the TTL value and is disabled by default. We
experimented with a TTL of 5, 10, 15, and 20 minutes to discern
the optimal value. Intriguingly, we observed negligible variance in
the overall code coverage achieved by the fuzzers. Therefore, the
TTL value (expiration time) does not affect the fuzzing capability.

5.6 Black-Box vs. Grey-Box

We position FuzzCache as a generic optimization for both black-
box and grey-box web application fuzzing. To understand if the
improvements brought by FuzzCache to Black-Widow and Web-
Fuzz differ statistically, we computed the coverage factors as the
ratio of code coverage achieved with FuzzCache enabled against
disabled (i.e., 𝑅𝐵𝑊 = 𝐵𝑊 +

𝐵𝑊
and 𝑅𝑊𝐹 = 𝑊𝐹+

𝑊𝐹
) for each application.

We conducted a paired-samples t-test on the two factors, with the
Null Hypothesis that there is no significant difference between
𝑅𝐵𝑊 and 𝑅𝑊𝐹 (i.e., 𝑅𝐵𝑊 = 𝑅𝑊𝐹). The evaluation results yielded a
paired sample t-test statistic of 0.92 and a P-value of 0.39. Since the
P-value is greater than the commonly used significance factor of
0.05, the paired-sample t-test failed to reject the null hypothesis.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Penghui Li and Mingxue Zhang

Table 5: Ablation study results. The last row of XSS Detection shows

the total number of detected vulnerabilities.

ID

Coverage (%) Throughput XSS Detection

BW+Cache BW+JIT BW+Cache BW+JIT BW+Cache BW+JIT

1 100 100 5.8× 2.4× 5 5

2 72.4 69.4 3.2× 1.8× 4 3
3 55.1 52.3 3.7× 2.3× 3 2

4 34.3 31.9 1.9× 1.1× 0 0
5 47.3 40.3 1.7× 1.0× 1 1
6 48.0 64.4 3.9× 1.3× 5 5
7 53.2 47.5 2.2× 1.9× 0 0
8 48.8 45.0 2.1× 1.1× 0 0
9 62.1 60.3 2.8× 1.1× 1 0

Mean 55.5 54.0 2.9× 1.5× 19 16

Therefore, we conclude that there is no enough evidence to suggest
a significant difference in the improvement on Black-Widow and
WebFuzz, in terms of code coverage.

Similarly, we performed paired-sample t-tests for the throughput
and number of detected vulnerabilities, obtaining the corresponding
P-values of 0.30 and 0.18, respectively. In both cases, we failed to
reject the null hypothesis, indicating that there is no sufficient
evidence to suggest a significant difference in the improvement on
Black-Widow and WebFuzz.

The experiment results prove that FuzzCache brings comparable
and notable improvements to both black-box and grey-box fuzzers,
and is a generic optimization for web application fuzzing.

5.7 Ablation Study

We present a comprehensive analysis to understand the benefits of
the key components of FuzzCache. Specifically, we examined the
cache and JIT components by individually enabling them on top of
Black-Widow. Since FuzzCache behaves similarly on Black-Widow
and WebFuzz, as demonstrated earlier, we conducted the ablation
study on top of Black-Widow as an example. Similarly, our evalu-
ation encompassed three dimensions: code coverage, throughput,
and XSS detection. The results are summarized in Table 5.
Cache. The primary advantage of the cache mechanism is to
avoid redundant and expensive data access operations. As shown
in Table 5, enabling cache on top of Black-Widow improved the
fuzzing throughput by an average of 2.9×. It also improved the code
coverage from 48.0% (vanilla Black-Widow) to 55.5%. Additionally,
in terms of XSS vulnerability detection, the variant BW+Cache
identified an additional of 4 vulnerabilities, highlighting the benefits
of the cache mechanism.
JIT. In our experiments, JIT demonstrated benefits for fuzzing by
improving the ultimate code coverage to an average of 54.0%. The
variant with JIT achieved a throughput increase of 1.5× and detected
1 more XSS vulnerability compared to vanilla Black-Widow. This
effectively demonstrated the efficacy of JIT.

However, it is worth noting that some public blogs have re-
ported that the current JIT may not bring significant benefits to
real-world web applications [16, 32]. This apparent inconsistency
can be explained by considering the specific workloads or exercised
scenarios. In web application fuzzing, especially during prolonged
runs, e.g., 24-hour, JIT can exhibit better efficiency as the cost of JIT

compilation can be compensated by the large number of execution
iterations across fuzzing trials. Conversely, when launching Black-
Widow for a shorter period, such as 10 minutes, the benefits may
become negligible. This suggests that the current implementation
of JIT compilation is more beneficial for the task of fuzzing.

6 Discussion

Improvement opportunities. There are several opportunities to
improve the current implementation of FuzzCache for even higher
efficiency. First, the current cache invalidation is coarse-grained
at the table granularity. FuzzCache would benefit from a finer-
grained strategy to reduce the frequency of data fetches and further
increase the cache hit rate.

Second, except for database and network data, other types of data
could also be cached. For instance, many modern web application
frameworks heavily rely on web template engines [47] to stream-
line the development process. Implementing a cache mechanism
for the rendered output of templates becomes beneficial, especially
considering that the output often consists of static or semi-static
contents. Additionally, some web applications integrate third-party
services, which could potentially be cached to minimize the slow-
down caused by external dependencies. Exploring and extending
the cache to more data sources presents an intriguing avenue for
further research and optimization.

Third, beyond data caching, removing irrelevant code can also be
helpful. Specifically, recent advancements in directed fuzzing [21,
24, 28] have demonstrated that not all code can lead to the exposure
of vulnerabilities. By focusing on a reduced scope, the fuzzers are
expected to have much better performances.
Compatibility with other oracles. The recently proposed work,
Atropos [20], introduced eight oracles to dynamically detect various
server-side vulnerabilities, following the Fault Escalation principle.
To make FuzzCache compatible with advanced fuzzers, we have
successfully ported the oracle dedicated to detecting SQL injection
vulnerabilities. We have not made attempts to integrate other ora-
cles into FuzzCache because Atropos has not been open-sourced
yet at the time of writing. Nevertheless, FuzzCache is inherently
designed to be compatible with other oracles as it does not modify
operations beyond database operations. We leave it as a future work
to integrate FuzzCache with more oracles.
Extensibility. The caching techniques presented in this work
exhibit broad extensibility. Beyond PHP-based web applications,
we also observed recurring data access patterns on applications
developed in other commonly employed languages, such as Node.js
and Python. By mitigating repetitive data access through efficient
caching strategies, we believe the idea of FuzzCache would also
significantly improve the dynamic testing of these applications.

7 Related Work

System optimizations of fuzzing. System optimizations of
fuzzing, including software and hardware-level approaches, have
drawn increasing attention from the research community. Zhang
et al. [46] leveraged the persistent mode to avoid the cost of fork-
ing new processes, and simplified OS interactions to further boost
fuzzing performance. Xu et al. [44] designed novel primitives to

FuzzCache : Optimizing Web Application Fuzzing Through Software-Based Data Cache CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

avoid three types of bottlenecks in fuzzing, e.g., heavy update of file
metadata. Chen et al. [14] proposed PTRIX that optimizes the pro-
cessing of Intel Processor Tracing (PT) and designed advanced feed-
back for fuzzing. Another work [38] also utilized Intel PT to boost
OS kernel fuzzing. Schumilo et al. [37] designed a snapshot-based
optimization for hypervisor fuzzing. Nagy et al. [30] optimized cov-
erage tracing mechanisms. Similar works include honggfuzz [6] and
RetroWrite [17] . Different from the above research, FuzzCache
aims to optimize existing web app fuzzing techniques from a new
perspective, by eliminating repetitive yet costly database queries
and network requests. It does not necessitate modifications to ex-
isting fuzzers but rather complements them by preventing unnec-
essary data fetches and boosting the throughput.
Web application fuzzing. In the realm of web application testing,
dynamic approaches like fuzzing play a crucial role in generat-
ing concrete inputs to find vulnerabilities. Given the dynamic and
stateful nature of web applications, various methodologies focus
on modeling their states to improve code coverage during black-
box fuzzing. Notably, Enemy of the State [18] discerns server-side
states in a black-box manner by analyzing differences in client-side
responses. Jäk [33] and Black-Widow [19] extend their scope to
include client-side events like form submissions and clicks. The
modeling of states allows dynamic approaches to achieve superior
code coverage.

On the other hand, recent works have applied grey-box fuzzing
for web application testing, by using the code coverage as feedback.
WebFuzz [40] rewrites the source code of web applications to in-
sert coverage tracking code while Witcher [39] and Atropos [20]
enhance the language runtime for this purpose. They also advance
their vulnerability detection capability using novel oracles [20, 39].
In our evaluation, we showcased how FuzzCache effectively com-
plements both black-box and grey-box solutions.

8 Conclusion

In this paper, we presented a novel approach to optimizing web ap-
plication fuzzing through software-based caches. Our approach
is grounded in a systematic empirical analysis of web applica-
tion workloads and performance profiling results, revealing the
prevalence of redundant data fetches. We introduced FuzzCache,
a software-based cache that complements and enhances existing
web application fuzzers. Our findings demonstrate that FuzzCache
substantially enhances web application fuzzing by achieving ele-
vated throughput, expanding code coverage, and improving vul-
nerability detection capabilities. We anticipate that the adoption of
FuzzCache will pave the way for new possibilities in web applica-
tion testing, contributing substantially to the enhancement of web
security.

Acknowledgments

The authors would like to thank the anonymous reviewers for
their constructive suggestions, which helped significantly improve
this work. The authors also thank Dr. Yuan Li for the insightful
discussion. This work was supported in part by a research project
at Zhongguancun Laboratory.

References

[1] 2020. How often do Cyber Attacks occur? https://aag-it.com/how-often-do-
cyber-attacks-occur/.

[2] 2024. Apache HTTP server project. https://httpd.apache.org/.
[3] 2024. Burp Suite. https://portswigger.net/burp.
[4] 2024. bWAPP, a buggy web application. ttp://www.itsecgames.com/.
[5] 2024. Damn Vulnerable Web Application (DVWA). https://github.com/digininja/

DVWA.
[6] 2024. honggfuzz. https://honggfuzz.dev.
[7] 2024. PHP. https://www.php.net/manual/en/book.opcache.php.
[8] 2024. PHP. https://www.php.net/manual/en/features.persistent-connections.

php.
[9] 2024. The PHP Interpreter. https://github.com/php/php-src.
[10] 2024. PHPBB. https://www.phpbb.com/.
[11] 2024. WordPress. https://wordpress.com/.
[12] 2024. Xdebug. https://xdebug.org/.
[13] An Chen, JiHo Lee, Basanta Chaulagain, Yonghwi Kwon, and Kyu Hyung Lee.

2023. SYNTHDB: Synthesizing Database via Program Analysis for Security
Testing of Web Applications. In Proceedings of the 2023 Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA, USA.

[14] Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen, Xinyu Xing,
Long Lu, and Bing Mao. 2019. Ptrix: Efficient hardware-assisted fuzzing for cots
binary. In Proceedings of the 26th ACM Conference on Computer and Communica-
tions Security (CCS). London, UK.

[15] Johannes Dahse and Thorsten Holz. 2014. Simulation of Built-in PHP Features
for Precise Static Code Analysis. In Proceedings of the 2014 Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA.

[16] Carlo Daniele. 2023. What’s New in PHP 8. https://kinsta.com/blog/php-8/.
[17] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.

Retrowrite: Statically instrumenting cots binaries for fuzzing and sanitization. In
Proceedings of the 41st IEEE Symposium on Security and Privacy (Oakland). San
Francisco, CA, USA.

[18] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna.
2012. Enemy of the state: A state-aware black-box web vulnerability scanner.
In Proceedings of the 21st USENIX Security Symposium (Security). Bellevue, WA,
USA.

[19] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. 2021. Black
widow: Blackbox data-driven web scanning. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy (Oakland). San Francisco, CA, USA.

[20] Emre Güler, Sergej Schumilo, Moritz Schloegel, Nils Bars, Philipp Görz, Xinyi Xu,
Cemal Kaygusuz, and Thorsten Holz. 2024. Atropos: Effective Fuzzing of Web
Applications for Server-Side Vulnerabilities. In Proceedings of the 33rd USENIX
Security Symposium (Security). Philadelphia, PA, USA.

[21] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles
Zhang. 2022. Beacon: Directed Grey-Box Fuzzing with Provable Path Pruning. In
Proceedings of the 43nd IEEE Symposium on Security and Privacy (Oakland). San
Francisco, CA.

[22] Penghui Li and Wei Meng. 2021. LChecker: Detecting Loose Comparison Bugs
in PHP. In Proceedings of the Web Conference (WWW). Ljubljana, Slovenia.

[23] Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo. 2021. On the Feasibil-
ity of Automated Built-in Function Modeling for PHP Symbolic Execution. In
Proceedings of the Web Conference (WWW). Ljubljana, Slovenia.

[24] Penghui Li, Wei Meng, and Chao Zhang. 2024. SDFuzz: Target States Driven
Directed Fuzzing. In Proceedings of the 33rd USENIX Security Symposium (Security).
Philadelphia, PA, USA.

[25] Penghui Li, Wei Meng, Mingxue Zhang, Chenlin Wang, and Changhua Luo.
2024. Holistic Concolic Execution for Dynamic Web Applications via Symbolic
Interpreter Analysis. In Proceedings of the 45th IEEE Symposium on Security and
Privacy (Oakland). San Francisco, CA, USA.

[26] LongxinH. 2024. xhprof for PHP7 and PHP8. https://github.com/longxinH/
xhprof/.

[27] Changhua Luo, Penghui Li, and Wei Meng. 2022. TChecker: Precise Static Inter-
Procedural Analysis for Detecting Taint-Style Vulnerabilities in PHPApplications.
In Proceedings of the 29th ACM Conference on Computer and Communications
Security (CCS). Los Angeles, CA, USA.

[28] Changhua Luo, Wei Meng, and Penghui Li. 2023. SelectFuzz: Efficient Directed
Fuzzing with Selective Path Exploration. In Proceedings of the 44th IEEE Sympo-
sium on Security and Privacy (Oakland). San Francisco, CA, USA.

[29] MemCached. 2024. MemCached. https://memcached.org/.
[30] Stefan Nagy and Matthew Hicks. 2019. Full-speed fuzzing: Reducing fuzzing over-

head through coverage-guided tracing. In Proceedings of the 40th IEEE Symposium
on Security and Privacy (Oakland). San Francisco, CA, USA.

[31] Nikic. 2024. A PHP parser written in PHP. https://github.com/nikic/PHP-Parser.
[32] Matthew Weier O’Phinney. 2023. Exploring the New PHP JIT Compiler. https:

//www.zend.com/blog/exploring-new-php-jit-compiler.
[33] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian Rossow.

2015. jäk: Using dynamic analysis to crawl and test modern web applications. In
Proceedings of the 18th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID). Kyoto, Japan.

https://aag-it.com/how-often-do-cyber-attacks-occur/
https://aag-it.com/how-often-do-cyber-attacks-occur/
https://httpd.apache.org/
https://portswigger.net/burp
ttp: //www.itsecgames.com/
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://honggfuzz.dev
https://www.php.net/manual/en/book.opcache.php
https://www.php.net/manual/en/features.persistent-connections.php
https://www.php.net/manual/en/features.persistent-connections.php
https://github.com/php/php-src
https://www.phpbb.com/
https://wordpress.com/
https://xdebug.org/
https://kinsta.com/blog/php-8/
https://github.com/longxinH/xhprof/
https://github.com/longxinH/xhprof/
https://memcached.org/
https://github.com/nikic/PHP-Parser
https://www.zend.com/blog/exploring-new-php-jit-compiler
https://www.zend.com/blog/exploring-new-php-jit-compiler

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Penghui Li and Mingxue Zhang

[34] PHP. 2024. Hierarchical Profiler. https://www.php.net/manual/en/book.xhprof.
php.

[35] PHP. 2024. OpCache Configuration. https://www.php.net/manual/en/opcache.
configuration.php.

[36] redis. 2023. Redis. https://redis.io/.
[37] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten

Holz. 2021. Nyx: Greybox hypervisor fuzzing using fast snapshots and affine
types. In Proceedings of the 30th USENIX Security Symposium (Security). Virtual
Event.

[38] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. 𝑘𝐴𝐹𝐿: Hardware-Assisted feedback fuzzing for OS kernels.
In Proceedings of the 26th USENIX Security Symposium (Security). Vancouver,
Canada.

[39] Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel, Giovanni Vigna, Christopher
Kruegel, Ruoyu Wang, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé. 2023.
Toss a fault to your witcher: Applying grey-box coverage-guided mutational
fuzzing to detect sql and command injection vulnerabilities. In Proceedings of
the 44th IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA,
USA.

[40] Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer, Michalis
Papaevripides, and Elias Athanasopoulos. 2021. webfuzz: Grey-box fuzzing for

web applications. In Proceedings of the 26th European Symposium on Research in
Computer Security (ESORICS). Virtual event.

[41] W3Techs. 2024. Usage statistics and market share of WordPress. https://w3techs.
com/technologies/details/cm-wordpress.

[42] W3Techs. 2024. Usage statistics of PHP for websites. https://w3techs.com/
technologies/details/pl-php.

[43] Wikipedia. 2023. Cache (computing). https://en.wikipedia.org/wiki/Cache_
(computing).

[44] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing
new operating primitives to improve fuzzing performance. In Proceedings of the
24th ACM Conference on Computer and Communications Security (CCS). Dallas,
TX, USA.

[45] Zend. 2024. Zend engine. https://www.zend.com/.
[46] Yunhang Zhang, Chengbin Pang, Stefan Nagy, Xun Chen, and Jun Xu. 2023.

Profile-guided System Optimizations for Accelerated Greybox Fuzzing. In Pro-
ceedings of the 30th ACM Conference on Computer and Communications Security
(CCS). Copenhagen, Denmark.

[47] Yudi Zhao, Yuan Zhang, and Min Yang. 2023. Remote Code Execution from 𝑆𝑆𝑇 𝐼

in the Sandbox: Automatically Detecting and Exploiting Template Escape Bugs.
In Proceedings of the 32nd USENIX Security Symposium (Security). Anaheim, CA,
USA.

https://www.php.net/manual/en/book.xhprof.php
https://www.php.net/manual/en/book.xhprof.php
https://www.php.net/manual/en/opcache.configuration.php
https://www.php.net/manual/en/opcache.configuration.php
https://redis.io/
https://w3techs.com/technologies/details/cm-wordpress
https://w3techs.com/technologies/details/cm-wordpress
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Cache_(computing)
https://www.zend.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Web Applications
	2.2 Web Application Fuzzing
	2.3 System Cache

	3 Motivation
	3.1 Understanding Execution Dynamics
	3.2 Insight

	4 FuzzCache
	4.1 Challenges and Solutions
	4.2 Database Data Cache
	4.3 Network Data Cache
	4.4 Just-In-Time Compilation
	4.5 Integration with Existing Fuzzers
	4.6 A Working Example
	4.7 Implementation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Code Coverage
	5.3 Throughput
	5.4 Vulnerability Detection
	5.5 Understanding the Cache
	5.6 Black-Box vs. Grey-Box
	5.7 Ablation Study

	6 Discussion
	7 Related Work
	8 Conclusion
	References

