Test Suites Guided Vulnerability Validation for Node.js
Applications

Changhua Luo*
Wuhan University
Wuhan, China
The Chinese University of Hong Kong
Hong Kong SAR, China
chdeluo@gmail.com

Wei Meng
The Chinese University of Hong Kong
Hong Kong SAR, China
wei@cse.cuhk.edu.hk

ABSTRACT

Dynamic methods have shown great promise in validating vulnera-
bilities and generating Proof-of-Concept (PoC) exploits of Node.js
applications. They typically rely on dictionaries or specifications to
determine the values of request parameters and their relationships.
However, they still struggle to generate complex inputs from the
provided dictionaries or specifications.

This work introduces a novel approach that utilizes existing test
suites to automatically generate end-to-end application inputs for
vulnerability validation. Our key observation is that Node.js ap-
plications often provide comprehensive test suites—in our study,
the unit testing code can cover an average of 85% of application
code—which can hardly be achieved by existing dynamic methods.
We thus design a new system, JSGo, that leverages test suites to
construct end-to-end test inputs. Since test suites directly invoke
application code instead of issuing requests from client-accessible
entry points, we cannot simply transform test suites into appli-
cation inputs. We instead propose a novel trace-guided mutation
mechanism based on concolic execution.

Our evaluation demonstrates that JSGo could reproduce 20 out
of 26 known vulnerabilities, which significantly outperformed the
state-of-the-art methods Restler, Miner, Witcher, and Burp by 10,
12, 11, 10 more cases, respectively. We also applied JSGo to validate
static analysis results in popular Node.js applications such as hexo.
It successfully validated seven vulnerabilities, two of which have
been patched because of our reports.

*This work was done when the author was at the Chinese University of Hong Kong.
t Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690332

Penghui Li'
Zhongguancun Laboratory
Beijing, China
lipenghui315@gmail.com

Chao Zhang
Tsinghua University
Beijing, China
chaoz@tsinghua.edu.cn

CCS CONCEPTS

« Security and privacy — Web application security.

KEYWORDS
Vulnerability Validation; Test Suites; Node.js

ACM Reference Format:

Changhua Luo, Penghui Li, Wei Meng, and Chao Zhang. 2024. Test Suites
Guided Vulnerability Validation for Node.js Applications. In Proceedings of
the 2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3658644.3690332

1 INTRODUCTION

Node.js applications have powered a large number of services on
the web. A survey conducted by the Node.js Foundation in 2024 re-
vealed that 36.42% of developers are using Node.js for their projects
[66]. Renowned companies like Netflix, PayPal, and LinkedIn build
their server-side applications using Node.js for its scalability and
speed in handling concurrent connections [11]. However, along-
side its popularity, Node.js applications suffer from severe security
vulnerabilities such as prototype pollution and cross-site scripting.
As an example, in the 2019 Equifax data breach, vulnerabilities in a
Node.js application led to the exposure of personal information of
approximately 147 million people [17].

Dynamic testing has been widely used to detect vulnerabilities
in web applications, especially Node.js applications. A recent work
Witcher [64] applies AFL to the Node.js applications to enable
mutational grex-box fuzzing by instrumenting the runtime. Black-
box web scanners such as Burp [49] and Black Widow [20] also have
consistently revealed security issues in Node.js apps. In addition,
REST API fuzzers [5, 19, 22, 40] generate diverse RESTful requests
to test web applications that support REST APIs, including those
built upon Node.js. Indeed, due to the efficacy and reliability, testing
has been a standard practice for vulnerability detection in Node.js
applications [20, 47, 50].

However, generating valid end-to-end application inputs (i.e.,
HTTP requests) to trigger deep vulnerabilities in Node.js appli-
cations has been a challenge. Since Node.js applications take as
input HTTP requests, simple random input mutation falls short of

https://doi.org/10.1145/3658644.3690332
https://doi.org/10.1145/3658644.3690332

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Request
The reference trace) parameters in Mutated request
of executing a test o / orignal HTTP Trace-suided parameters in the
case 4 requests race-guidec PoC exploits

mutation

- Aligning the
Backward data-flow g 8 .
. X execution with the -,
_ analysis on internal -
- reference trace

variables f
Figure 1: The overview of execution alignment. The red and green

colors represent the execution traces of test suites and (mutated)
HTTP requests, respectively.

generating high-quality HT TP request parameters that satisfy the
required logic of the application. Therefore, most dynamic tools rely
on external resources like fixed input dictionaries [24] or OpenAPI
specification [62] that configure request parameters (which are
key-value pairs) and relationships between application endpoints.
However, the dictionaries or specifications can be unreliable and
incomplete. Prior solutions have difficulty in producing valid in-
puts that diverge from the external resources. For example, Witcher
designs an HTTP mutator to diversify inputs [64], but its seeds of
request parameters are still derived from the dictionary, hence the
diversity of mutated inputs remains limited.

This work aims to address the above-mentioned limitations and
enhance vulnerability validation for Node.js applications. We made
a key observation that Node.js applications usually (if not always)
come with test suites that dynamically execute parts of application
code. Test suites are sets of unit testing code specifically designed
to verify that applications function as intended. Our studies in
§2 demonstrate that 55 out of 58 real-world Node.js applications
are packaged with test suites. Besides, the test suites are mostly
comprehensive. Since test suites directly execute target code units
rather than starting from the client-accessible entry points through
issuing HT TP requests, they usually can achieve a high code cov-
erage. We recorded the code coverage achieved by executing the
bundled test suites and found they could cover an average of 85%
of code across the applications.

Since test suites could already achieve a high coverage, this work
proposes to leverage test suites to construct end-to-end inputs for
Node.js applications. The rationale is that test suites can execute
the code that web fuzzers usually struggle to reach. However, a test
suite cannot directly be used as an end-to-end input for a Node.js
application vulnerability. Security vulnerabilities triggered by a
(mutated) test suite can be false positives because the test suite
does not execute from the application’s entry point. Therefore,
we propose to extend the test suites into normal client-initiated
end-to-end application inputs (i.e., HT TP requests).

To fill the gap, we design trace-guided mutation, a novel approach
that constructs and mutates HT TP requests based on the execution
information of a test suite. We mutate the requests so that the
application takes execution paths that align (connect) with the ones
of the test suites, thus reaching deep vulnerable code and then
possibly triggering the vulnerabilities in the code.

Constructing and mutating HTTP requests based on test suites
is challenging. An intuitive approach is to utilize the runtime infor-
mation obtained from test suite execution as guidance for input mu-
tation. However, it is unclear how such guidance can overcome the

Changhua Luo, Penghui Li, Wei Meng, and Chao Zhang

disparity incurred by the differences between test suites (JavaScript
code invocations) and HTTP requests. A test suite directly assigns
values to internal variables within the tested code. To trigger the
same (vulnerable) code from application entry points, specific HTTP
requests need to be constructed to satisfy the required internal vari-
able values along the possible paths. To align these internal variable
values and thus executions, one might utilize symbolic execution
[38] to compute symbolic expressions for the internal variables.
However, according to our experiments, Node.js applications con-
tain intricate code and a sophisticated event-driven mechanism,
often rendering full concolic execution infeasible.

We design and implement JSGo to generate end-to-end inputs
for vulnerability validation of Node.js applications. JSGo can be
used to reproduce known vulnerabilities and validate static analysis
results. Figure 1 illustrates the high-level idea. JSGo takes a code
location as the target and generates end-to-end inputs to trigger the
vulnerability in the target code. The target can be a vulnerable code
location that dynamic tools fail to reach because of its deep loca-
tion, or they can reach it but cannot provide the specific execution
context required to trigger the vulnerability. JSGo generates inputs
by performing trace-guided mutation on HTTP requests produced
by existing fuzzers. Specifically, JSGo takes the execution trace of
a test case reaching the target code as the reference trace. Starting
from an application entry point, it checks the HTTP requests gen-
erated by a web fuzzer and selects one if its trace intersects with
the reference trace.! It then mutates the HTTP request to align its
trace with the reference trace.

To achieve trace alignment and trigger the security vulnerabil-
ity, JSGo mutates the HTTP requests to manipulate the values of
two types of internal variables. The first type is the one used in
the conditional statement where the execution trace of an HTTP
request diverges from the reference trace. JSGo manipulates their
values to match those used in the reference trace. This ensures that
the executions of HTTP requests take the branch in reference trace
and progressively approach the target code. The second type is the
variables used in the target code. JSGo manipulates their value to
be the prepared attack payloads (e.g., ‘__proto__’
variables for prototype pollution vulnerabilities). This ensures that
the executions of HTTP requests meet the data-flow conditions for
triggering injection vulnerabilities.

We propose an under-constrained approach to manipulate the
values of internal variables. Specifically, JSGo conducts backward
data-flow analysis from an internal variable until identifying vari-
ables (referred to as the source variables) that constantly have a
runtime value identical to request parameters (such as cookies,
query parameters, etc.). We consider the source variables to be user-
supplied inputs because of their value consistency and symbolize
them during symbolic execution. This allows the symbolic execu-
tion engine ExpoSE [38] to skip much early code, such as the code
parsing structured HT TP requests into program variables. We then
introduce an artificial constraint Equals(internal_variable,value)
into the program, where the first operand represents a symbolic
expression of an internal variable based on source variables, and the

of object index

!In a few cases, no execution of HTTP requests intersects with any reference trace.
We discuss this situation in §7.

Test Suites Guided Vulnerability Validation for Node.js Applications

second operand is the desired value of the internal variable. By solv-
ing this expression, we determine the values of source variables and
thus the request parameters used in the HT TP requests. Note that
our approach can handle complex conditional statements within
the application, as we do not solve any program path constraints
but focus on the artificial constraint to align execution traces.

Our current implementation of JSGo can generate validation
payloads for XSS, SQLi, and prototype pollution vulnerabilities.
It automatically validates prototype pollution by checking if the
inserted object property exists. For XSS and SQLi vulnerabilities,
we validate them following common practices [19, 23].

We evaluated JSGo from two perspectives—reproducing known
vulnerabilities and validating static detection results. In total, we
collected 26 known vulnerabilities in 15 Node.js web applications.
We selected the applications 1) evaluated in prior works [56, 72]
and 2) intentionally designed to contain vulnerabilities. JSGo could
generate end-to-end inputs for reproducing 20 out of 26 vulnerabil-
ities, achieving 10 more than the second-best dynamic tool in our
evaluation. To evaluate JSGo’s capabilities in validating suspicious
vulnerabilities, we set vulnerable locations provided by the static
detection tools [29, 34, 56] as targets. Static detection tools usually
report vulnerable functions or paths, which are often insufficient
as evidence of valid vulnerabilities. JSGo validated 7 vulnerabilities
in the latest version of Node.js applications with several thousand
stars on Github, including derby and hexo. We have reported our
findings to the developers and 2 vulnerabilities have been patched
at the time of writing.

In summary, this paper makes the following contributions.

e We presented an in-depth study to demonstrate the value of
test suites for reaching deep code.

o We developed JSGo, a new tool to generate end-to-end in-
puts for validating vulnerabilities in Node.js applications,
leveraging our novel trace-guided input mutation technique.

e Our evaluation demonstrated that JSGo can generate com-
plex inputs to test deep Node.js application code, which is
difficult for previous works.

e We open-source JSGo and the associated artifacts publicly
at https://github.com/WHU-seclab/JSGo.

2 A SURVEY ON TEST-SUITES

Test suites are a collection of test cases that verify the behavior of
specific application functionalities. In Node.js, test suites are typ-
ically written in JavaScript or TypeScript, utilizing testing frame-
works such as Mocha [41], Jasmine [26], and Jest [28]. A test suite
usually comprises two main components: 1) a ‘Describe’ section
that outlines the functionality being tested, and 2) it’ blocks, each
containing an individual test case. Within an ‘it’ block, the test
code is executed to perform a particular action, and an associated
assertion (e.g., expect statement) verifies whether the observed
outcome aligns with the expected behavior. Listing 1 shows a test
suite in parse-server [45] that validates ‘Parse.Push’ functionality.

Test suites are usually included in the same Node.js application
code repositories. We conducted a preliminary survey of Node.js
web applications by searching keywords like ‘nodejs’ and ‘frame-
work’ on GitHub. We finally collected 58 Node.js web applications.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

1 describe('Parse.Push', () => {
2 // a test case whose execution can reach the sink
operation of a prototype vulnerability.

3 it('should properly send push', async () => {

4 const { sendToInstallationSpy } = await setup();

5 const pushStatusId = await Parse.Push.send({

6 where: {

7 deviceType: 'ios',

8 },

9 data: {

10 badge: 'Increment',

11 alert: 'Hello world!',

12 1,

13 DN

14 await pushCompleted(pushStatusId);

15 // an assertion

16 expect(sendToInstallationSpy.calls.count()).
toEqual (10);

17 1

18 // other test cases related to the 'Parse.Push'
functionality

19 -

20 B;

Listing 1: A test suite verifying the "Parse .Push" functionality in
parse-server 5.0.0-alpha.13.

Table 1: Statistics on the test suite availability in Node.js applications.

Apps w/o Test-Suites Apps with Test-Suites

Jest Mocha Jasmine Others
Num. 3 15 14 6 20
Proportion 5.17% 25.86% 24.14% 10.34% 34.48%
Example chat.io Next.js Nestjs parse-server vitest

The dataset included 8 popular applications based on usage statis-
tics in 2023 [61]. The number of web applications we studied is
substantial compared to those evaluated in prior works [56, 64]. A
Node.js application installs test frameworks like Mocha for testing
through package. json file. Therefore, we check the package.json
file and find if the general testing frameworks are included and
listed there under the ‘devDependencies’ key and the ‘scripts’ key.
Table 1 shows the proportion of Node.js applications providing test
suites. Out of 58 Node.js applications surveyed, the majority (55)
provide test suites.

We further investigate the comprehensiveness of test suites. We
randomly sampled 14 applications (including 4 popular ones accord-
ing to [61]) that provide test suites. We utilized code coverage tools
nyc [25] and c8 8] to record the code coverage while running the
test suites. The average code coverage of test suites in 14 applica-
tions ranges from 55% (Rocket.Chat) to 100% (Ant Design, etc.), with
an overall average of 85.0%. To compare the coverage of test suites
and web fuzzers, we utilized Restler [5] to test the 14 applications
within a 24-hour timeframe. We generated OpenAPI/Swagger spec-
ifications based on the application usage tutorials. We do not run
other tools like Witcher [64] or Black Widow[20] because they are
unable to test certain Node.js applications (e.g., parse-server [45])
that interact programmatically with client-side APIs. The results
demonstrated that Restler often achieved lower coverage compared
to the unit testing code. In conclusion, test suites have the potential
to complement web fuzzers.

https://github.com/WHU-seclab/JSGo

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Changhua Luo, Penghui Li, Wei Meng, and Chao Zhang

1 function sanitizeDatabaseResult(originalObject, result

) o

2 const response = {};

3 if (!result) {

4 return Promise.resolve(response);

5 }

6 Object.keys(originalObject) . forEach(key => {

7 const keyUpdate = originalObject[key]; //
determine if that was an op

8 if (keyUpdate && typeof keyUpdate === 'object'
&& keyUpdate.__op && ['Add', 'AddUnique', '
Remove', 'Increment'].indexOf(keyUpdate.__op) >
-1 {

9 expandResultOnKeyPath(response, key,
result);

10 }

11 IDH

12

13}

14 function expandResultOnKeyPath(object, key, value) {

15 if (key.indexOf('.") < 0) {

16 object[key] = value[key];

17 return object;

18 }

19 const path = key.split('.");

20 const firstKey = path[0];

21 const nextPath = path.slice(l).join('.");

22 object[firstKey] = expandResultOnKeyPath(object[
firstKey] || {}, nextPath, value[firstKey]);

23 delete object[key];

24 return object;

25}

Listing 2: A prototype pollution in parse-server 5.0.0-alpha.13.

3 MOTIVATION AND CHALLENGES

In this section, we motivate our research using an example. We
further illustrate the challenges of using test suites to guide input
generation with this example.

Listing 2 shows a code snippet of parse-server. The function
sanitizeDatabaseResult() calls expandResultOnKeyPath() in line
9. Before that, there are two conditions in line 3 and line 8. The
function expandResultOnKeyPath() traverses nested objects repre-
sented by the parameter object along the path specified by the
parameter key, updating the object with the value provided in the
parameter value at the specified path.

Prototype pollution occurs if the parameter key contains proper-
ties that modify the prototype of the object. Specifically, if the key
includes properties such as ‘constructor.prototype’, the func-
tion might inadvertently alter the prototype of objects, leading
to unexpected and potentially malicious behavior. To trigger the
vulnerability, the function expandResultOnKeyPath() should be ex-
ecuted multiple times, i.e., the execution should reach line 22 (which
is one of the target code locations to trigger this vulnerability). The
other target location is line 16, in which the prototype pollution
occurs when the value of variable ‘object’ is the prototype object.

3.1 Limitation of Existing Works

Existing dynamic tools cannot trigger the above vulnerability. List-
ing 3 illustrates the HTTP requests (lines 1-8) generated by a fuzzer
called Restler [5], as well as the end-to-end input in lines 10-13

1 // HTTP requests produced by Restler

2 curl -X POST http://localhost:1337/parse/classes/
GameScore \

3 -H ...\

4 -d '{"score":1.23, "playerName":"fuzzstring","
cheatMode": true}'

6 curl -X PUT http://localhost:1337/parse/classes/
GameScore/dt5eS0Zvj9 \

7 -H ...\

8 -d '{ "score":1.23, "playerName":"fuzzstring",
cheatMode": true}'

10 // An HTTP request produced by JSGo

11 curl -X PUT http://localhost:1337/parse/classes/
GameScore/dt5eS0Zvj9 \

12 -H ... \

13 -d '{"score": 2.23, "playerName": "fuzzstrini",
cheatMode": false, "KybeTDkRgO.constructor.
prototype.dummy": {"__op": "Increment", "amount":

-13}’

Listing 3: An end-to-end input produced by JSGo.

crafted by JSGo. We list two key limitations of previous techniques
that hinder their capabilities. The two limitations also apply to
other dynamic tools.

Composite Type Data. While existing dynamic tools can generate
request parameter values in basic types (line 8 in Listing 3), they
cannot generate request parameter values in composite types. For
instance, the HTTP request in line 13 demonstrates a query param-
eter, which is an object with two properties ‘__op’ and ‘amount’.

The inability of existing techniques to generate data in composite
types impedes their capacity to produce inputs required for reaching
deep code. According to our evaluation, these tools cannot trigger
vulnerabilities in applications like Ghost and juice-shop because
of this reason. In this example, the condition statement in line 8
of Listing 2 checks if the variable keyUpdate (a program variable
corresponding to a query parameter) is of type object. While most
tools can generate inputs leading to executions taking the false
branch, they cannot execute the code in the true branch.

Complex Request Parameter Values. Existing tools depend on
the user-supplied dictionary or specification to generate request
parameter values. However, the dictionary or specification might
not be complete. For example, we collected the sample usages? and
the official document® as the specification of Restler for testing
parse-server. Despite this, none of the produced HTTP requests
could execute code in line 22 of Listing 2. In fact, to reach line 22, the
expected key of a query parameter in the HTTP request should be
a string ‘sentPerType.ios’ or ‘sentPerType.android’. This is a value
automatically generated by particular types of devices making the
HTTP request rather than directly supplied by users.

3.2 Research Goals and Challenges

In this section, we discuss our research goals and challenges.

3.2.1 Research Goals and Scope. Our research goal is to overcome
the above-mentioned limitations and to better generate end-to-end

Zhttps://github.com/bhtz/parse-server-swagger
3https://docs.parseplatform.org/parse-server/guide/

Test Suites Guided Vulnerability Validation for Node.js Applications

inputs for Node.js applications. The key idea is to mutate HTTP
requests based on the application’s test suites. For example, parse-
server includes 19 test suites that can directly execute code in line
22. Listing 1 is one among them. By mutating an HTTP request to
align its execution with that of this test suite, we can generate an
HTTP request reaching the deep code in line 22 and further test it.

We generate end-to-end inputs to trigger vulnerabilities in the
given target code, which can be either sink operations of a known
vulnerability or vulnerable code identified by static analysis tools
[34, 56]. We believe that it is reasonable to assume knowledge of
the vulnerable code when generating test inputs. For example, we
can obtain the target location from the CVE database if we aim to
reproduce known vulnerabilities or from static detection tools if we
validate statically detected vulnerabilities. Generating end-to-end
inputs to trigger vulnerabilities is also important in other domains
such as C/C++ applications [10, 39] and OS kernels [63].

In this work, we generate end-to-end test inputs for validating
three types of vulnerabilities—cross-site scripting (XSS), SQL injec-
tion and prototype pollution—in Node.js applications. Note that our
objective does not involve automated exploitation through meth-
ods such as generating specific values for the polluted properties
[37, 56] or ensuring the dynamic execution of the XSS payloads [20].
Instead, we aim to automatically generate HT TP requests capable
of reaching sinks and manipulating variables within the sink oper-
ations to serve as the prepared attack payloads (e.g., ‘__proto__’
in prototype pollution).

3.22 Challenges. 1t is not trivial to generate an end-to-end HTTP
request (e.g., lines 11-13 in Listing 3), even using a test suite. We
summarize two challenges below.

Different Execution Entry Points. We aim to generate HTTP
requests such that their execution reaches some deep code. To this
end, we mutate HTTP requests to align their executions with those
of test cases. To meet the path constraints, certain variable values
need to be satisfied while serving an HTTP request. For example, to
align the execution of an HTTP request with a test case execution
reaching line 22 in Listing 2, the variable keyUpdate in line 8 in
the execution of HTTP requests needs to take the same value as
that in test suite execution. However, we cannot directly assign
particular values to internal variables as the applications start from
entry points when processing HTTP requests. One common ap-
proach to achieving this is by symbolizing the external inputs (i.e.,
HTTP requests) and representing internal variables using symbolic
expressions. This approach is infeasible due to the complex lan-
guage features and application semantics that the current concolic
execution engine [38] has limitations in handling.

Data-flow Conditions. The second challenge is triggering the
vulnerabilities after the executions of HTTP requests reach the
target location. Note that purely relying on information from test
suites is not sufficient because test suites are designed for verifying
normal functionalities. In our research, our goal is to inject attack
payloads into variables within sink operations even if these vari-
ables are the results of user inputs and data operations. This task
presents challenges because of the data flow from the user-supplied
input data to program variables.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

4 JSGO

We propose JSGo to address the above-mentioned challenges. JSGo
leverages test suites to mutate HTTP requests for validating or
reproducing security vulnerabilities in Node.js applications. In this
section, we discuss the components of JSGo.

4.1 Workflow

Since test suites can achieve high coverage, JSGo mutates HTTP
requests generated by web fuzzers, facilitating their penetration
into the deeper code covered by test suites. JSGo achieves this by
aligning HTTP requests’ execution traces with those of the selected
test cases. In particular, given the target code (e.g., the code con-
taining a suspicious injection vulnerability), JSGo first selects base
test cases and sequences of HTTP requests for alignment. This
selection is based on the trace intersection of test cases and HTTP
request sequences (§4.2). We design strategies to mutate specific
HTTP requests without disrupting the data dependencies within
sequences. Later, JSGo employs trace-guided mutation to mutate
an HTTP request (§4.3). In this step, it identifies and manipulates re-
quest parameters that correspond to two types of internal variables
in the application code. This enables JSGo to generate end-to-end
HTTP requests that reach and test the target code. We finally em-
ploy a vulnerability validation component (§4.4) to ensure that the
mutated HTTP requests trigger the vulnerabilities.

4.2 Selecting Base Test Suites and HTTP
Requests

We aim to generate end-to-end HTTP requests for triggering some
(deep) vulnerabilities by aligning execution traces with those of
known valid test suites. In this step, we execute the existing test
suites and monitor their execution traces, aiming to find reference
traces that can already reach the target locations. After that, we
generate base HTTP requests using an existing web fuzzer called
Restler [5] and select the ones whose execution traces intersect
with the reference traces.

4.2.1 Identifying Reachable Test Cases. We select test cases based
on whether their executions reach the target code. Since most
Node.js applications offer test suites, we execute their testing code
and analyze the corresponding code coverage. Our analysis is con-
ducted at the granularity of test cases (e.g., ‘it’ blocks), as we have
observed that test cases are typically independent units. We con-
sider the execution trace (i.e., a sequence of executed statements)
of reachable test cases as reference trace.

4.2.2 Generating and Selecting HTTP Request Sequences. We dis-
cuss how we select the basis HT TP requests for mutation.

Generating HTTP Request Sequences. JSGo leverages an ex-
isting web fuzzer, Restler, to produce HTTP requests. We use
Restler for its latest implementation of state-of-the-art testing tech-
niques [19, 40]. For instance, Restler can reuse prior response con-
tents to extend request sequences (e.g., the PUST request reuses
‘dt5eS0Zvj9’ in Listing 3). Restler can also test various types of
Node.js applications as it generates HT TP request sequences that
are acceptable to most web applications. Specifically, it generates
each new sequence by progressively adding a new request to the end
of an existing sequence. Restler has a garbage collection mechanism

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

that is responsible for recycling allocated resources post-fuzzing.
We disable it since we need to operate on them later.

Selecting HTTP Requests to Mutate. In each sequence, we
select only the last request whose execution trace, upon replaying,
intersects with the reference trace. We focus on the last intersecting
request because the prior intersecting requests in this sequence
have been handled when we analyze shorter sequences. We will
mutate the last intersecting request in §4.3.

An HTTP request can intersect with multiple reference test
cases. We prioritize in the test case that has not been used by other
HTTP requests as the reference test case of that HTTP request.
This enables us to obtain diversified reference traces and generate
HTTP requests exercising the target code from different paths. Not
all paths leading to sink operations may implement the appropriate
sanitization. By testing diverse HTTP requests reaching the sinks,
we have more opportunities to trigger the target vulnerabilities.

Before mutating the selected HTTP requests for the application
to serve, we need to address a challenge. The mutated requests
might introduce potential data dependency issues when processed
by the application. The issues arise because the dependencies en-
coded in the mutated requests might become outdated within the
contexts of the sequences where they are located. For instance, if
we mutate any DELETE operation without updating the object IDs
it deletes, errors will occur when serving this request as the same
objects will be attempted to be deleted twice. Below, we introduce
how we overcome the data dependency issues based on the different
types of the selected HTTP requests.

@ PUT, PATCH, POST, and GET Methods. For the re-

quest that uses the PUT or PATCH method, we mutate the request
parameters of it. While the PUT or PATCH method can update an ex-
isting resource, the way it updates will not influence future update
operations. For example, in Listing 3, we can mutate the request
parameter of PUT request (lines 6-8) only. The mutated PUT requests
(lines 11-13) can update the same object repeatedly.

We also mutate the parameters of the HTTP request that uses
the POST or GET method, Mostly, GET requests are used for retrieving
data and POST requests are for submitting data to be processed.
Mutating the request parameters usually does not lead to data
dependency issues. However, it is possible to use such requests
to alter existing data, as shown in [12]. For example, developers
can delete a resource by sending one such request to an endpoint
designated for deletion. We design the strategy below to mitigate
such issues.

@ DELETE Method. The most complex situation occurs when

the last request of a sequence is a DELETE one. A DELETE request
generally operates on resources created by the prior requests within
the sequence. However, the original sequence execution has already
deleted these resources. The resources cannot be deleted again using
the unmodified resource identifiers.

Our current approach to addressing this problem involves man-
ual efforts. To process the mutated request with the DELETE
method, we recover and replay the entire sequence in which the
DELETE request is located. We then manually modify critical param-
eter fields related to resources such as object IDs. We envision an
automated solution by leveraging Restler’s dependency analysis
to update the resource identifiers accordingly during the recovery

Changhua Luo, Penghui Li, Wei Meng, and Chao Zhang

process. Given that manual intervention only involves copy-paste
operations, we consider such an adjustment acceptable.

4.3 Trace-Guided Mutation

In this section, we discuss how we mutate the last intersecting
request of the HTTP request to trigger the target vulnerabilities.
We propose a novel technique called trace-guided mutation for
mutating HTTP requests. In the following sections, we will first
describe our high-level idea of trace-guided mutation, then the
two types of variables we manipulate, and finally explain how we
manipulate variables using concolic execution.

4.3.1 Overview. The core technique of trace-guided mutation in-
volves mutating user-supplied inputs based on the reference values.
These reference values are either runtime values of certain vari-
ables during the execution of the reference test case or our prepared
attack payloads used to trigger security vulnerabilities. The differ-
ence between trace-guided mutation and other mutation techniques
is that we have obtained the reference value to mutate towards.
Specifically, we mutate HT TP requests to manipulate certain types
of program variables (detailed in §4.3.2), enabling their execution
values to match the reference values. By doing this, we can control
the program behaviors and generate HTTP requests to reach and
test the target code.

4.3.2 Identifying Variables for Manipulation. We manipulate two
types of variables to align executions and trigger vulnerabilities.
In particular, we consider the reaching conditions and data-flow
conditions during variable manipulation.

Reaching Conditions. The HTTP requests must execute the
target code before triggering the vulnerability there. The reaching
conditions are often determined by the variables in conditional
statements on the path. However, not all condition variables in
reference traces are important. We identify and manipulate the
variables that cause misalignment between HTTP requests and
reference test cases.

Specifically, JSGo conducts a control-dependency program slic-
ing from the intersecting code to the target code. This slicing ex-
tracts the conditions on which the target code is control-dependent.
JSGo then identifies these reaching conditions for further manip-
ulation, focusing on their comparison expressions. For instance,
consider the execution of the test case depicted in Listing 1, where
divergence occurs from the target code (specifically, at line 22 in
Listing 2) due to the condition at line 8 in Listing 2. In this case,
JSGo identifies the variable keyUpdate for manipulation.
Data-flow Conditions. Upon reaching the target code, the next
step is to trigger potential vulnerabilities there. Specifically, we
focus on manipulating critical parameters used in sink operations.
In the case of prototype pollution, there might be two sink opera-
tions. We consider both sink operations as the targets to trigger that
vulnerability. In Listing 2, for example, lines 16 and 22 are consid-
ered as the targets to trigger a prototype pollution vulnerability. To
identify data-flow conditions, we analyze the vulnerability-specific
sinks (targets) and extract the related variables.

Test Suites Guided Vulnerability Validation for Node.js Applications

4.3.3 Manipulating Variables by Mutating Request Parameters. Af-
ter identifying the two types of critical variables, we propose to ma-
nipulate them and ensure they take desired runtime values. Specif-
ically, JSGo monitors the runtime values of reaching conditions.
If discrepancies exist between serving the HTTP request and ex-
ecuting its reference test case, JSGo intervenes by manipulating
the variables involved in these comparison expressions. For exam-
ple, JSGo first records the value of keyUpdate during the execution
of the reference test case as the reference value in Listing 2. The
value of keyUpdate during the execution of HTTP requests, if found
equivalent to the reference value, can result in alignment at line 8
with the reference trace. Similarly, for data-flow conditions, JSGo
monitors their runtime values and aligns them with prepared attack
payloads per vulnerability type.

We propose a novel method to enhance the existing concolic
execution tool ExpoSE [38] so that it can generate inputs needed
to satisfy both reaching and data-flow conditions. With the help of
the concrete values (the original HTTP requests), concolic execu-
tion is able to focus on related program paths and states [21, 54]
instead of blindly exploring all. When conducting concolic exe-
cution, an intuitive approach to controlling the runtime value of
a program variable VAR is to symbolize user inputs, derive sym-
bolic expressions of VAR, and then solve the expressions to obtain
the desired user input values. However, it is non-trivial to apply
concolic execution for Node.js applications due to the JavaScript
language features and the complexities of web applications. First,
JavaScript supports compound types like objects, making it difficult
for existing concolic execution tools to generate runtime variable
values in the correct types. Second, web applications are complex
and have much code, which cannot be handled well by existing
concolic execution tools.

To address the first challenge, we do not directly solve symbolic
expressions involving JavaScript objects. Instead, if an object vari-
able Vj, is one of the two types of internal variables in §4.3.2, we
identify the request parameter of that object variable V,, by compar-
ing the request parameter value with the V,’s runtime values. We
then calculate the required request parameter values that would
lead to the alignment of object values. To mitigate the second chal-
lenge, we simplify the concolic execution analysis to handle only
operations changing the variable values. As a result, JSGo only
needs to perform analysis on reduced application code. In the fol-
lowing, we describe the details, i.e., how we generate end-to-end
HTTP requests to manipulate a given variable, VAR.

Symbolizing Internal Variables. We first determine the vari-
ables that need to be symbolized. Directly symbolizing user inputs
involves high complexity and is unaffordable. An internal variable
VAR may be data dependent on some variables, which directly take
values from user inputs and we denote them as source variables
of VAR. The source variables have shorter data flow paths to the
target internal variables, and lower complexity for the concolic
execution engine. We thus propose to symbolize and mutate the
source variables for helping manipulate the internal variable VAR.
We specify two general conditions for source variables. First, they
must have data dependencies with VAR. Second, they must directly
take values from the user-supplied inputs. Our key observation is
that while there is much code handling the user-supplied HTTP

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

request, the variables storing request parameter values might not
be updated in an early stage and their values are mostly directly
reused in the program.

However, it is difficult to identify such variables using static anal-
ysis as the applications can use diverse and complex custom input
processing logic. We observe some existing works use parameter
keywords [13, 19] to infer internal variables directly controlled by
user requests. We find the heuristics to be unreliable in the context
of Node.js applications. Instead, we set different special request
parameter values and monitor such values during the application
execution. If some internal variables always take the exact special
parameter values, they are highly likely to directly take values from
the user-set request parameter values.

To identify source variables of a variable VAR, we conduct back-
ward static data-flow analysis starting from VAR. We stop backward
data-flow analysis once we identify the first source variables of VAR
because we prefer variables that are closer to VAR for simplicity.
We discuss the details of static analysis in §5.1.

Concolic Execution. We employ concolic execution on the appli-
cations using the selected HTTP request in §4.2.2 as input. Specif-
ically, we introduce an artificial constraint Equals(VAR,VAL),
where Equals() compares the equivalence of two expressions, and
VAL denotes the corresponding reference value of VAR (see §4.3.2).
The concolic execution engine can produce a symbolic representa-
tion of the target variable VAR, and solve the artificial constraint to
assign the desired value VAL to VAR. Such an artificial constraint is
generated and solved just before 1) the point of divergence between
the HTTP request and its corresponding reference test case or 2)
the target code if the execution reaches that stage.

We mitigate a challenge in concolic execution related to the
numerous program paths that emerge during this phase. Since our
main objective is to solve the artificial constraint on a single path,
many of the program paths become unnecessary. Consequently, we
modify ExpoSE [38] to execute only the program path towards the
target code location. Specifically, we halt the concolic execution
analysis once ExpoSE reaches the next program location for solving
the artificial constraint.

We use the example in Listing 2 to illustrate the idea. To reach
the target code, the reference value of variable keyUpdate should be
an object. Through the value consistency check, JSGo discovered
that keyUpdate is from a user-supplied request parameter value.
Therefore, keyUpdate is not only the variable VAR we want to
manipulate because it is used in the condition, but also the source
variable. JSGo assigns the reference value VAL (a JavaScript object)
of keyUpdate to a request parameter value after solving the artificial
constraint Equals(VAR, VAL). We discuss how we assign object
values to request parameters in §5.2.

Mutating HTTP requests. Finally, we utilize the value Vjeqy
generated by ExpoSE to modify the HTTP requests. Vy,e4y represents
the value of a source variable that results in the reference value
in VAR. This value should be assigned to the corresponding user-
supplied request parameter. We identify the request parameter
linked to each source variable based on the consistency between
the source variable’s runtime value and the request parameter value.
We then set the request parameter value to take Ve, However,
it is not straightforward if V;;¢,, has a different type from those of

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

existing parameter values. This discrepancy can arise when Ve,
corresponds to a new request parameter shown in the reference
test case but absent in the HTTP request. In such cases, simply
mutating existing parameters may not suffice.

To solve this problem, our mutation approach introduces a new
parameter to the HTTP request. This parameter value is Vjeqy,
which can be in a simple type like an integer or a compound type
such as an object. This new parameter’s key is a randomized string.
We select strings as the key because HTTP request parameter keys
must adhere to this data type. Subsequently, we dispatch the mu-
tated HTTP requests to the application and scrutinize the execution
trace. If the new execution path still deviates before the condition
as in the prior execution, it could be attributed to the randomized
parameter key. In such cases, the reference value of that parameter
key must also be a string and can be similarly obtained from the
reference trace. Hence, we further mutate the parameter key to
align it with the reference value.

In Listing 2, since there are no request parameter values in the
object type (lines 6-8 in Listing 3), JSGo generates a new query
parameter (the last parameter of line 13 in Listing 3) and uses
a random parameter key. It issues an HTTP request and further
mutates its parameter key based on the reference test case execution.
This results in an HTTP request directly reaching the target code.
Subsequently, JSGo identifies the input fields (the last parameter
key of line 13 in Listing 3) that correspond to the source variables
affecting the critical variables used in the target code. Since parts of
the parameter key are used as the object variable in the target code,
JSGo assigns the prepared payloads to the corresponding fields in
the parameter key.

4.4 Vulnerability Validation

While the aforementioned techniques enable us to generate HTTP
requests that reach the target code and set prepared attack payloads
to the variables in the target code, there remains a gap in triggering
vulnerabilities. Even if we manage to assign XSS payloads to critical
variables in an XSS sink location, we may still be unable to trigger
the XSS vulnerability if the payload is not executed.

Therefore, we conduct further validation of vulnerabilities after
crafting the mutated HTTP requests. For XSS and SQL injection
vulnerabilities, we send the HTTP requests and observe if the attack
payloads are executed successfully. Specifically, we monitor the
runtime values of variables used in XSS or SQLi sink locations and
check if they contain special attack payloads.

Regarding prototype pollution, we implement automatic vali-
dation by verifying if the inserted property (e.g., ‘dummy’) exists
in the JavaScript ‘Object’. Additionally, according to some CVEs
[14, 15, 58], developers consider it dangerous if one object index
‘__proto__’ or if two-dimensional object index
variables are set to ‘constructor’ and ‘prototype’. Therefore, if
the runtime values of index variables take these special values, we
also consider the HTTP requests as dangerous inputs.

variable is set to

5 IMPLEMENTATION

We implemented all techniques in a tool named JSGo. JSGo was
built at the top of a number of existing tools, including ODGen [34],

Changhua Luo, Penghui Li, Wei Meng, and Chao Zhang

Restler [5], and ExpoSE [38]. The users need to provide code loca-
tion and vulnerability type. This is available from various sources
such as static analysis tools like ODGen and Fast. In this section,
we delve into several important implementation issues.

5.1 Static Data-Flow Analysis

In §4.3.3, we perform static data-flow analysis to identify the
variables that need to be symbolized. We utilized ODGen [34], a
JavaScript taint-analysis tool for this task. We also attempted other
alternative solutions such as Fast [29] and CodeQL [16], and found
that ODGen outperformed them for our needs.

ODGen generates object dependence graphs illustrating the data
dependencies among different objects in the application. It provides
functions to traverse the data dependency edges in a backward
manner using depth-first search. This perfectly aligns with our
requirements to identify the data flows affecting internal variables.
We thus directly leverage these functions to identify and export
data dependencies.

However, a limitation of ODGen is its inability to complete anal-
ysis within a reasonable time for large Node.js applications. To
address this challenge, we adopt a strategy to simplify the program
based on our specific needs. Specifically, we profile the application
when executing the HTTP requests. Since all required functions
are reserved, the semantics and functionality per case are also pre-
served. Subsequently, ODGen analyzes this reduced codebase to
reduce its analysis time.

5.2 Type Consistency

We find that although JavaScript supports dynamic typing, the
values of parameters should maintain the same type. In other words,
when we mutate request parameters, the modified values should
retain the original type to avoid invalidating the HTTP request;
otherwise, this could lead to errors in the Node.js application. When
identifying parameter keys or values corresponding to the program
variables based on the consistency of their values, we also need to
consider their types.

JavaScript variables may exist in singular types such as integers
or compound types like objects. Regardless of their types, we can
capture their values. Specifically, we employ the JSON. stringify ()
function to log the runtime values of specific variables during the
execution of reference test cases. Subsequently, we parse the file
contents to perform type conversion. For instance, JavaScript ob-
jects typically start with {, while strings begin with " or ’. We
ensure the logged runtime values are correctly typed before utiliz-
ing them in request parameters. For example, in the input generated
by JSGo in Listing 3, the value assigned to keyUpdate is of the object
type, and we directly incorporate the logged object (e.g., {. . .}) into
the request.

6 EVALUATION

We evaluate JSGo’s capability of vulnerability validation in two
aspects: 1) reproducing known vulnerabilities and 2) validating
static detection results.

Test Suites Guided Vulnerability Validation for Node.js Applications

6.1 Dataset and Setup

In this section, we discuss the dataset we use and how we set up
the experiments.

6.1.1 Dataset. To evaluate the efficacy of JSGo and other tools,
we include 15 Node.js web applications (including 19 versions)
that contain known vulnerabilities in our dataset, as shown in
Table 2. The dataset includes 11 real web applications (including
13 versions) and 4 synthetic ones (including 6 versions, marked
with { in Table 2) intentionally designed to be vulnerable. We
believe this dataset is diverse and representative as it includes
seven applications evaluated by prior work [29, 56, 64], ordinary
applications like pdx-parks, and popular applications like Ghost.
Note that some applications like Express.js were evaluated by prior
works [56], but were not included in our dataset because we could
not find any known vulnerabilities in them. Nevertheless, JSGo
has indirectly analyzed Express.js because it is included by other
applications (e.g., parse-server) as a component.

To reproduce known vulnerabilities, we require the correspond-
ing sink operations as targets. We searched for known vulnerabili-
ties in Node.js programs using CVE databases, GitHub issues and
commits, blogs, and Snyk [67]. However, we found limited public
information on these vulnerabilities. For instance, some applica-
tions do not disclose PoC exploits and CVE details. We therefore
identified vulnerable code locations by searching for keywords
like XSS in commits. Some CVEs were reported by static analysis
tools [29, 34]. To obtain more detailed information, we reviewed
the vulnerabilities reported by these tools and reran them on the
affected application versions to gather further specifics. In total, we
collected 26 known vulnerabilities in these 15 Node.js applications.

Besides reproducing known vulnerabilities, we also used JSGo to
validate the static analysis results of the latest application versions.
We applied static analysis tools to all applications in Table 2, except
for the synthetic ones. We also validated static alerts in 8 additional
applications (more details in §6.3) selected from §2, as they have
comprehensive test suites according to our study.

6.1.2 Setup. We discuss the experiment setup in this part.

Comparison with Related Tools. Since we cannot find any
directed fuzzing tools for Node.js applications, we include state-of-
the-art web application fuzzers and scanners in the evaluation. We
do not compare JSGo with validators or monitors that only mon-
itor the application’s runtime behaviors and cannot produce test
inputs, because JSGo proactively generates HTTP requests and is
not a (reactive) validator. Specifically, we compare with Restler [5],
Witcher [64], Miner [40] and the web scanner Burp [49]. Witcher
operates in two steps: 1) initially crawling the application and col-
lecting a set of entry URLs, and 2) separately fuzzing each URL.
Since certain Node.js applications interface with clients program-
matically via REST APIs and their index web pages (if accessible)
contain no useful information like hyperlinks, they are incompatible
with crawler-based testing tools like Witcher and Burp. Addition-
ally, Witcher operates by instrumenting the Node.js runtime, whose
version is not compatible with certain applications. Consequently,
we do not evaluate Witcher and Burp on these applications. To
use REST API fuzzers, we reuse existing application specifications
or make a new one based on their documents if none is available.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

We customize the dictionaries and specifications in other tools to
ensure that our collected attack payloads are applied to all appli-
cations with each tool. We apply the methods in §4.4 to validate if
the generated HTTP requests are true positives.

Target Code. Our evaluation consists of two main components:
reproducing known vulnerabilities in older versions of applica-
tions and generating test inputs to validate new vulnerabilities.
Generating inputs for reproducing known vulnerabilities is useful
because such inputs are sometimes unavailable. In our evaluation,
we identified 8 instances of reflected Cross-Site Scripting (XSS), 6
instances of SQL Injection (SQLi), and 12 instances of prototype
pollution vulnerabilities in these applications. 12 out of 26 known
vulnerabilities do not provide public PoC exploits. For validating
new vulnerabilities, we select the vulnerable locations identified
by existing static analysis tools [34, 56] as the target locations for
JSGo.

Time Limit. JSGo produces application inputs by modifying the
HTTP requests generated by Restler. It has two steps: first, JSGo
relies on Restler to generate seed inputs; second, it selects and
adjusts these requests to approach specific target locations. We
execute Restler for one hour before transitioning to JSGo’s mutation
process. This one-hour duration is sufficient for Restler to generate
an ample number of seeds for JSGo. In the mutation phase, JSGo
can exit automatically, for example, when it completes the analysis
or encounters a failure in selecting test cases.

For Witcher, we limit its crawler to run for four hours and fuzz
each URL for 20 minutes, following the practice in its paper. We
set a time limit of six hours for other dynamic analysis tools. To
facilitate a fair comparison with previous techniques, we allow all
other tools to run until they reach the time limit.

6.2 Reproducing Known Vulnerabilities

We present the efficiency of JSGo in reproducing known vulnera-
bilities in this subsection.

6.2.1 Overall Results. We list the results of reproducing known
vulnerabilities in Table 2. JSGo, Restler, Miner, Witcher, and Burp
reproduced 20, 10, 8, 9, and 10 cases, respectively. We explain the
performance of the other tools first. We will discuss JSGo in detail
in subsequent sections.

Restler and Miner. Despite Miner’s objective of enhancing
Restler’s capabilities, our experiments showed that it used more
time than Restler to reproduce five cases. The reason is probably
that Restler, which is actively maintained by Microsoft, has better
integrated the techniques introduced in Miner. For instance, Restler
could generate APIs that reuse contents from prior responses,
whereas Miner, despite initially proposing this technique, did not
achieve this design in certain applications (e.g., parse-server). Since
JSGo reused Restler for the first hour of fuzzing, it used the same
time frame as Restler for reproducing the vulnerabilities within 1
hour. Note that Restler and Miner heavily relied on swagger/Ope-
nAPI specifications. They could not reproduce the vulnerabilities
(e.g., case 25) in the endpoints not specified in the specifications.

Burp. Burp used the shortest time to trigger vulnerabilities in eight
cases (e.g., case 3). Unlike other tools, Burp did not require com-
pilation phases (required by REST API fuzzers) or fuzzing phases

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Changhua Luo, Penghui Li, Wei Meng, and Chao Zhang

Table 2: Evaluation results on Node.js applications. { denotes synthetic applications. PP denotes prototype pollution vulnerability type. N/A
means the tool is not applicable to test this application. - means that the tool cannot reproduce the vulnerability (within the time limit). Target

code is only required by JSGo.

Application Vulnerability Information Vulnerability Triggering Time (hours) Concolic Execution
ID Name Stars Type Target Code PoC Availability Restler Miner Witcher Burp JSGo # Iteration Time (minutes)
1 thinkjs-3.2.4/thinkjs-helper 20 rp index.js:11 No - - N/A - - - -
2 thinkjs-2.2.3 5.3K SQLi src/model/base.js:366 No 0.58 - N/A - 0.58 0 0
3 parse-server-6.4.0 20.6K SQLi src/Adapters/Storage/Mongo/MongoTransform.js:354 Yes 0.22 0.23 N/A 0.05 0.22 0 0
4 parse-server-5.0.0-alpha.13 20.6K PP src/Controllers/DatabaseController.js:262,268 Yes - - N/A - 3.67 2 <1
5 parse-server-5.0.0-alpha.13 20.6K PP src/Adapters/Storage/Mongo/MongoTransform.js:514 Yes - - N/A - 2.80 3
6 parse-server-5.0.0-alpha.13 20.6K PP src/RestWrite.js:1618 Yes - - N/A - - - -
7 parse-server-5.0.0-alpha.13 20.6K PP src/triggers.js:113 Yes - - N/A - 2.39 1 <1
8 juice-shop-16.0.07 9.5K XSS routes/trackOrder.ts:17 Yes 0.12 0.12 1.30 0.08 0.12 0 0
9 juice-shop-16.0.07 9.5K SQLi routes/trackOrder.ts:20 Yes - - 1.82 - 3.60 4 6
10 juice-shop-16.0.07 9.5K SQLi routes/updateProductReviews.ts:17 Yes - - - - 5.55 4 11
11 juice-shop-16.0.07 9.5K SQLi routes/login.ts:36 Yes 0.05 0.04 0.60 0.01 0.05 0 0
12 juice-shop-16.0.07 9.5K SQLi routes/search.ts:23 Yes 0.05 0.05 0.87 0.34 0.05 0 0
13 NodeGoat/marked@0.3.5% 1.8K XsS app/views/memos.html:31 No - - 1.30 - 1.74 2 6
14 NodeGoat/marked@0.3.61 1.8K XsS app/views/memos.html:31 No - - 135 - 1.63 2 6
15 NodeGoat/marked@0.3.87 1.8K XSS app/views/memos.html:31 No - - 131 - 1.63 2 6
16 NodeGoat/forever@2.0.07 1.8K PP forever/index.js:31 No - - - - - - -
17 NodeGoat/nconf@0.10.0F 1.8K PP lib/nconf/stores/memory.js:96 No - - - - - - -
18 totaljs/framework-3.4.5 43K PP utils.js:6612 No 2.70 - N/A N/A 472 2 <1
19 pdx-parks 3 PP node-jquery-deparam.js:75 Yes 0.46 0.46 0.34 0.16 0.46 0 0
20 Ghost-1.19.2 45.6K PP core/server/api/invites.js:224 No - - - - 3.88 4 5
21 ember.js-4.8.0 224K PP packages/@ember/-internals/metal/lib/property_get.ts:115 Yes - - N/A N/A - - -
22 moleculer-0.14.33 6K PP src/utils.js:413 No - - - - - - -
23 NodeBB-0.6.1 14K XSS src/topics/posts.js:149 No 0.35 0.20 N/A 0.03 0.35 0 0
24 hapi-0.15.9 14.6K XSS lib/payload.js:236 Yes 0.17 0.32 N/A 0.03 0.17 0 0
25 Ghost-4.3.0 456K XSS core/server/web/admin/views/preview.html:6 No - - 0.56 022 177 1 <1
26 docsify-4.12.0 271K XSS src/plugins/search/search.js:212 Yes 0.47 0.50 0.65 0.01 047 0 0

(required by Witcher), which consumed additional time. However,
Burp was unable to exercise applications in a stateful manner. For
example, to reproduce certain vulnerabilities related to updating
resources (e.g., case 2 and case 10), it is necessary to construct a PUT
request operating on the resource identifiers of a POST request.
Burp was not aware of the dependencies, thus could not reproduce
deep vulnerabilities.

Witcher. Witcher was able to test only 15 out of 26 vulnerabili-
ties. The reason arose from its reliance on a web crawler to fetch
application URLs and its dependency upon a specific version of the
Node.js runtime (§6.1.2). In the 15 cases that Witcher could test, it
successfully reproduced 10 cases within the time limit. It is worth
noting that Witcher is not designed as a directed fuzzer. It took
some time to crawl before conducting the fuzzing experiments, and
thus, it took more time.

6.2.2 Advantages of JSGo. JSGo reproduced 6 vulnerabilities that
other tools could not reproduce, because it enhances vulnerability
validation in two aspects: it generates HTTP requests 1) reaching
deep code locations and 2) exploring diverse execution contexts.
They are explain the false negatives of existing approaches.

Reaching Deep Code Locations. Reaching the code is necessary
to trigger the vulnerabilities there. JSGo can generate complex in-
puts that reach deep code locations, even when the input semantics
are not explicitly encoded in the specifications or dictionaries. In
parse-server, JSGo is the only tool capable of reproducing three
prototype pollution vulnerabilities. This is because JSGo could gen-
erate complex parameters (such as those in object type). Testing
other applications also necessitates complex inputs. For instance,
to reach the target code and trigger SQL injection vulnerabilities in
juice-shop (case 10), we need to craft a PATCH request containing
representations of the JSON Patch operations.

Exploring Diverse Execution Contexts. Reaching the vulner-
able code does not necessarily indicate successful vulnerability
reproduction, as certain vulnerabilities can only be triggered in
specific contexts. Case 20 is the example where other dynamic tools
reach the vulnerable location (i.e., fetchLoggedInUser () function)
but cannot trigger the vulnerabilities. The reasons for this might
include: 1) vulnerabilities are sanitized in some paths but not all,
and 2) the inputs to sink operations are untrusted inputs in only a
few paths to the sink functions.

6.2.3 Factors Influencing Vulnerability Reproduction Efficiency. The
time required to trigger different vulnerabilities varies widely, rang-
ing from less than a minute to several hours. There are mainly two
factors affecting JSGo’s efficiency in reproducing a vulnerability.

Application Code Complexity. JSGo typically spent most of
its time on the static data-flow analysis phase. Due to variations
in application sizes, we could discern significant differences in
the time taken to construct data dependency graphs and trigger
vulnerabilities. As shown in Table 2, dynamic symbolic execution
did not consume much time. This demonstrated the effectiveness of
our strategies outlined in §4.3.3, as only one path was concolically
executed and one symbolic constraint was solved in an iteration.

Diversity of Reachable Test Suites. JSGo cannot identify the
test suites that execute specific paths leading to vulnerabilities,
which can lead to its low efficiency when it finds many reachable
test suites that exercise the target code. Case 18 is an example of
this challenge. The vulnerability is located in a set () function of
utils. js in totaljs. This function is widely called. It is not only
directly invoked by its relevant test cases but also indirectly called
through test cases that invoke other components, which further
invoke the function. As a result, test cases reaching the vulnerable
code are quite common while only the ones calling U.set() are
useful for triggering the vulnerabilities. JSGo spent time mutating
requests based on the test cases invoking the vulnerable function

Test Suites Guided Vulnerability Validation for Node.js Applications

even if these test suites safely invoked that function. It was less
efficient in some cases because of it.

6.2.4 Failure in Vulnerability Reproduction. In this subsection, we
investigate why JSGo could not reproduce certain vulnerabilities.
The reasons include 1) JSGo has false negatives in reproducing
vulnerabilities and 2) some vulnerabilities are unexploitable.

Lack of Suitable Test Suites. JSGo had false negatives when it
could not find any suitable test case for aligning HTTP requests. For
example, Restler—that JSGo uses to produce initial HTTP requests—
failed to generate inputs that can reach the sink operation in case
21. When searching for reachable test cases that reach the sink op-
eration, JSGo also found none. Consequently, it stopped attempting
to adjust HTTP requests as it was unable to handle this case.

Interestingly, although the developers of ember.js did not in-
clude test code invoking the vulnerable function (specifically, the
setProperties() function) in version 4.8.0, they added test cases to
execute the function in the latest version. The Node.js community
has increased its recognition of the importance of providing test
suites for their applications [53]. We believe that our assumption
of using test suites is valid in many cases.

Limitations of Implementations. JSGo failed to reproduce cer-
tain known vulnerabilities due to limitations in current prototype
implementation. In case 6, JSGo encountered issues when attempt-
ing to execute concolic execution using the ExpoSE. Despite our
efforts to address errors (e.g., the inclusion of Jalangi2 with dif-
ferent versions in parse-server and ExpoSE), the tool still could
not compute constraints because of some unsupported applica-
tion code between the source variables and the artificial condition.
Consequently, JSGo could not obtain the desired values for source
variables and thus request parameters. Also, the static tool we used
might not be able to discover the variables whose values are con-
stantly identical to the user inputs. JSGo was unable to analyze
such cases if it did not locate source variables to symbolize.

Unexploitable Vulnerabilities. Our evaluation encompasses
certain known vulnerabilities that, upon confirmation, were found
to be invalid. Consequently, it is impossible to reproduce these
vulnerabilities. Below are the reasons.

First, some vulnerabilities within functionalities or components
are unexploitable through HTTP requests. For instance, in case 16,
the prototype pollution vulnerability is present in forever@2.0.0,
a vulnerable package used within NodeGoat. NodeGoat does not
utilize the vulnerable function to receive user inputs, so the re-
ported vulnerabilities are not exploitable in the application. The
vulnerabilities in case 17 are invalid for the same reason.

Second, for some reported vulnerabilities, their source inputs
originate from trusted actors rather than end users. Therefore, these
vulnerabilities are non-exploitable and have not been addressed by
developers in the newer versions. Case 22 in moleculer is such an
example. As we confirmed with the developers, since the sink oper-
ation of a reported vulnerability was located in an internal function
that processed environment variables instead of user inputs, the
vulnerability was considered invalid.

6.2.5 False Positives.]SGo might produce test inputs that are re-
jected by client-side checks. As discussed in §4.4, JSGo monitors
whether the runtime values of server-side sink variables contain

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

prepared attack payloads. This method is insufficient for validat-
ing reflected XSS vulnerabilities as it does not consider client-side
protections such as Content Security Policy enforcement and client-
side sanitizations. To evaluate false positives, we replayed the inputs
produced by JSGo, then observed if they could trigger an alert on
the client side. The results showed that JSGo did not have any false
positives in our experiments. The reason is that the tested appli-
cations did not employ proper client-side protections, leading to
exploitable XSS vulnerabilities. It is possible to integrate automated
client-side validation with JSGo to improve detection precision. We
leave this as a future work.

The other two types of vulnerabilities are server-side threats. The
capability to manipulate sink variable values could lead to successful
exploitation. Specifically, the tampered sink variable values either
altered SQL query structures (SQLI) or allowed modifications to the
prototype of an object (prototype pollution). JSGo did not produce
any false positives in our manual validation.

6.2.6 Concolic Execution’s Contribution to Vulnerability Valida-
tion. To generate a test input, JSGo performs multiple iterations
of concolic execution. Each iteration corresponds to one (artificial)
constraint. In the last two columns of Table 2, we detail the itera-
tion number of concolic execution and the time used to solve all
constraints for producing each vulnerability-triggering input. In
summary, JSGo required 1-4 iterations of concolic execution per
vulnerability validation. The time taken to solve constraints usually
spanned several minutes for one vulnerability.

JSGo solved artificial constraints rather than path constraints
to streamline symbolic constraint solving. During each iteration,
JSGo generates an artificial constraint directly or employs backward
data-flow analysis, depending on whether the runtime value of the
internal variable aligns with any request parameter. We explain
this process in detail and present several case studies below.

Base Case. If the value of the internal variable is consistent with
a request parameter, the variable can be directly symbolized and
takes that value. Take case 4 as an example, where in its first it-
eration, JSGo introduces an artificial constraint keyUpdate ==
{*_op” : ..}, where keyUpdate is the internal variable and
{*__op” : ...} is the reference value. ExpoSE solves a constraint
(= keyUpdate {“__op” : ...}) by assigning {“__op” : ...} to the
fresh symbol keyUpdate. Note that while this artificial constraint
is trivial, the real condition that uses keyUpdate in the application
code is not.

Data-flow Analysis. If an internal variable and the request pa-
rameter take different values, JSGo employs backward data-flow
analysis to find source variables to symbolize. The artificial con-
straint is a bit more complex. For example, in the second iteration
of case 20, Formula 1 shows the constraint represented with source
variables, where the properties of an object variable options are

source variables.
options.method == “update” A options.email == “test@test.com”

A AuthenticatoinConstraint A (options.newPassword # null)
A (options.newPassword # undefined) (1)
A (options.newPassword.length > 10)

A options.newPassword.toLowerCase() == “slim3rson99”

It is worth highlighting two points here. First, ExpoSE
collected all real path conditions until it met the artificial

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

one (underlined above). The value of an internal variable
was options.newPassword.toLowerCase(), which was dif-
ferent from the user-supplied input options.newPassword.
ODGen detected their data flow, and JSGo symbolized
options.newPassword. Note that JSGo omitted format checks on
options.newPassword.toLowerCase() in the application code but
utilized the reference value (“sl1m3rson99”) for producing this
artificial constraint.

Second, we have observed that other cases, such as the first iter-
ation in case 13, resemble case 20 and do not involve complex con-
straints from source variables to internal variables. However, this
does not imply that internal variables can always be represented by
source variables using simple constraints. On the contrary, this is-
sue primarily occurs because ExpoSE lacks full support for complex
operations, including many built-in functions and asynchronous
processes [38]. We discuss a possible solution in §7

6.3 Validating Static Detection Results

In this section, we apply JSGo to validate static vulnerability de-
tection results in the latest versions of Node.js applications in our
dataset. We tested 19 web applications, including 11 real web ap-
plications from Table 2 and 8 additional ones (the applications
listed in Table 3, Rocket.Chat/Rocket.Chat, and meteor/meteor).
We leverage static analysis tools, including ODGen [34], Fast [29],
and silent-spring [56] to identify potential XSS, SQLi and prototype
pollution vulnerabilities. Note that Fast detects XSS and SQLI; silent-
spring detects only prototype pollution; and ODGen is known to
have a scalability issue [34]. We set a 6-hour time limit for each
static analysis tool per application version.

6.3.1 Results. We applied JSGo to validate all 75 unique alerts
reported by the static analysis tools. We used the vulnerable code
locations reported by static analysis as the testing targets. JSGo
stopped analysis in a few cases where there were no suitable test
cases (the reasons are discussed in §7). In total, it took approximately
44 hours to analyze all the alerts. To improve efficiency, object
dependence graph construction, the most time-consuming part in
JSGo, can be done once per application and reused for data-flow
queries when validating multiple static alerts.

For each validated vulnerability, we list in Table 3 the static
analysis tools that reported the alerts, the total number of static
alerts of the same vulnerability type reported by these tools, and
the reference test case. It can be observed that static analysis tools
can report alerts in the latest versions of popular applications, and
JSGo can leverage test suites to validate the alerts.

Among the static analysis results, JSGo validated 7 as true-
positive vulnerabilities in 6 popular applications like derbyjs/derby
and hexojs/hexo. To validate the 7 static alerts, JSGo required at
most 5 iterations of concolic execution. We acknowledge that JSGo
might have false negatives in vulnerability validation because of
reasons discussed in §6.2.4. However, we did not evaluate false neg-
atives as proving a case unexploitable is difficult and orthogonal to
our research goal. Additionally, all the new vulnerabilities validated
by JSGo were instances of prototype pollution. This may be attrib-
uted to the fact that prototype pollution is a relatively new type of
vulnerability, whereas XSS and SQL injection (SQLi) vulnerabilities
have been extensively tested and studied in prior works [29, 34].

Changhua Luo, Penghui Li, Wei Meng, and Chao Zhang

We further discuss the advantages of JSGo in validating static
detection results. It uses test suites and can test undocumented
code. In derbyjs/derby, attackers need to manipulate the value of a
specific attribute “as" in template files. JSGo identified the critical
input field “as" by examining the consistency between input data
(provided in test suites) and values of the sink variables reported by
the static analysis tool. Without leveraging test suites, generating
an end-to-end input is difficult because the OpenAPI specifications
do not account for the practice of users supplying malicious tag
values within these templates.

Our concolic execution guided by reference values con-
tributed significantly to validating static alerts. For example, in
keystonejs/keystone, some internal variables represent the length
of attacker-controllable inputs (e.g., propPath and shortcut). To
validate two reported static alerts, the length variables must sat-
isfy certain conditions before the executions reach the reported
sink location. The reference test cases provide direct solutions (e.g.,
“propPath.length==3" and “shortcut.length==2") to satisfy these
checks. The artificial constraint expressed by JSGo is shown in For-
mula 2. The SMT solver solved the constraints and generated input
values (e.g., “propPath : [‘block’, *’, *‘’]", where it added two
items of empty string ¢’ to increase the array length) required to
reach the reported sink locations.

(and (= (to_real propPath_Array_Length) 3.0)

(= (to_real shortcut_Array_Length) 2.0)) @
Disclosure. We reported all the 7 validated vulnerabilities to the
developers for confirmation. It is worth noting that some developers
patch vulnerabilities only if they believe the vulnerabilities pose a
legitimate risk to their users. For instance, JSGo validated a vulner-
ability in hexojs/hexo. The developers were uncertain whether end
users had the capabilities to manipulate the source data in the way
demonstrated in our test input. The same applied to hapijs/hapi.
The developers believed that exploitation cannot be carried out by
non-privileged users, while JSGo cannot determine the identity of
users supplying the inputs. At the time of writing, the developers
confirmed and fixed two vulnerabilities we reported.

6.3.2 Comparison. We compare JSGo with Restler because Restler
could test all Node.js web applications in Table 3. JSGo performed
better as it validated seven static alerts yet Restler could not validate
any of them.

Three applications (Rocket.Chat/Rocket.Chat, hexojs/hexo,
and meteor/meteor) in our dataset were previously analyzed
by silent-spring [56]. Its authors manually analyzed 32 re-
ported alerts for these applications and identified 1 alert in
Rocket.Chat/Rocket.Chat as exploitable. JSGo confirmed another
vulnerability in hexojs/hexo that was missed by the authors. This
demonstrates that JSGo could assist humans in validating more
vulnerabilities.

6.3.3 Case Studies. In this section, we disclose the details of two
vulnerabilities validated by JSGo and have been patched by devel-
opers.

Prototype Pollution in Derby. Derby is a popular Node.js web
framework with 4.7K stars on GitHub. JSGo validated a prototype
pollution vulnerability in Derby, which prompted a fix in its latest

Test Suites Guided Vulnerability Validation for Node.js Applications

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 3: New vulnerabilities validated by JSGo. - denotes no static alerts are validated. Static tools denote the static tools that report the
validated vulnerability. S denotes silent-spring, 0 denotes ODGen, and F denotes Fast. # Alerts denotes the number of unique static alerts in a

type of "Type".

Applications Github Stars Type Static tools # Alerts Reference Test Case # Iteration State

derbyjs/derby-4.0.0 4.7K PP S,0 4 “ignores DOM mutations in components’ create()" 5 Patched
primefaces/primereact-10.6.2 5.7K PP S 5 “when input is using keyfilter for alphabetic accept paste of alphabetic values" 3 Patched
hapijs/hapi-21.3.7 14.5K PP S 2 “exposes an api (drops scope by default)" 2 Reported
hexojs/hexo-7.1.1 38.4K PP S 1 “write config" 2 Reported
keystonejs/keystone-5e078c 8.8K PP S,0 2 “child field in nested array" 4 Reported
keystonejs/keystone-5e078c 8.8K PP S,0 2 “defaults limits to 100KiB" 4 Reported
windyfancy/webcontext-25b80c 153 PP S,0 1 “5.test read and write session " 1 Reported

version. Restler could not reproduce this vulnerability because it
failed to reach the reported sink location.

To validate the vulnerability, JSGo first identified a test case listed
in Table 3 that reached this vulnerable function. While comparing
the traces of HTTP requests and the reference trace, JSGo identi-
fied the important input field, i.e., the “as" attribute set to HTML
templates. Indeed, the functionality of handling HTML templates is
using the vulnerable function. When the users supply HTML tem-
plates to the applications, they can send requests to manipulate the
“as" attribute to be the payload __proto__ and conduct prototype
pollution attacks.

Prototype Pollution in Primereact. Primereact is a rich set of
open-source Ul Components for React, with 5.7K stars on GitHub
[51]. Its code implementation in handling locale is vulnerable to
prototype pollution. A locale is a set of parameters that defines
the user’s language preferences that the user wants to see in their
user interface. The client-side users can request to set or update
the locale data they wish to use, which is stored in the server-side
application. The user input ultimately influences the parameters
of updateLocaleOption(), a function identified as vulnerable to
prototype pollution. After we reported the feasibility of controlling
parameters of updateLocaleOption(), the developers implemented
security checks to filter out values of ‘ __proto__’ and ‘prototype’
used in the object index variables of this function. Interestingly,
they also added the same checks in other locale functions that were
not reported as vulnerable by the static tools.

7 DISCUSSION

Lack of Intersecting Traces. JSGo mutates the HTTP requests
whose traces intersect with reference traces. It is possible that
reference test cases do not exhibit traces intersecting with the
executions of HTTP requests. One possible approach to addressing
this is chaining test suites. Suppose we aim to adjust the HTTP
request based on the test case Tj, yet their executions show no
intersection. If we can identify another test case T, that shares
intersecting execution with both the HTTP request and T, we can
then align the HTTP request with T, to ensure that its execution
also intersects with Tj,. We further adjust the mutated HTTP request
to align its execution with that of Tj,.

Static Symbolic Execution. In this work, we use concolic exe-
cution to help align execution traces and generate end-to-end test
inputs. However, concolic execution could not solve some complex
artificial constraints (see §6.2.6). This can potentially be mitigated
through static symbolic execution solutions like Fast [29]. In partic-
ular, we believe static symbolic execution and concolic execution

approaches have their own advantages and disadvantages. On the
one hand, static symbolic execution tools can generate reference
values for request parameters even if no reference test case is avail-
able. On the other hand, using the selected HT TP requests as initial
inputs, concolic execution can effectively test related program paths
that depend on particular input values. Concolic execution can also
handle Node.js programs’ dynamic behaviors as it executes the
code and collects constraints at runtime. Integrating static symbolic
execution into JSGo thus could further improve JSGo, especially
when there is no reachable test suite. We leave this as a future work.

8 RELATED WORK

Node.js and NPM Security. Many works are proposed to study,
detect, and exploit vulnerabilities in Node.js applications and the
NPM ecosystem. Zimmermann et al. demonstrate that the NPM
ecosystem leads to high risk to the software supply chain due to
NPM packages’ dependencies on malicious code [74]. Xiao et al
discovered a novel feasible attack called “hidden property abus-
ing” in the Node.js applications [71]. Some work uses static or
hybrid analysis to detect vulnerabilities (e.g., injection vulnera-
bilities and supply chain attacks) in NPM packages [29, 34, 60],
JavaScript bundling [52], and Node.js applications [29, 34, 56]. Liu
et al. [37] and Shcherbakov et al.[57] further detect and chain proto-
type pollution gadgets to exploit prototype pollution. In addition to
injection vulnerabilities, Oz et al. detect file upload vulnerabilities
on Node.js [43]. Staicu et al. find that regular-expression denial-of-
service (ReDoS) vulnerabilities could compromise the availability
of JavaScript-based web servers [59], and several works are pro-
posed to detect ReDoS vulnerabilities [35, 36, 52, 70] or recover the
performance of web services against ReDoS attacks [6]. To facilitate
evaluating vulnerabilities, Bhuiyan et al. [9] and Oliver et al. [42]
propose benchmarks containing different types of vulnerabilities
for Node.js.

Besides vulnerability detection and exploitation, some works
propose or investigate defense mechanisms for JavaScript. Mir [65]
and Hodor [69] protect Node.js applications by restricting code
privilege. JSLIM [73] and Mininode [31] debloat Node.JS applica-
tions to reduce attack surfaces. Synode [60] rewrites the source
code to enforce a safe mode for preventing injection vulnerabilities
on Node.js. BreakApp [32] compartmentalizes JavaScript applica-
tions at the boundaries of untrusted modules to enhance security.
NatiSand [1] and JSand [2] sandbox JavaScript; and SANDDRILLER
[3] and ADsafe [48] verify JavaScript sandboxing properties.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

JSGo particularly focuses on validating security issues in Node.js
applications. It uses test suites to generate HTTP requests for repro-
ducing known vulnerabilities and validating static analysis results.

Test Suites and Software Maintenance. Test suites are com-
monly utilized in testing compilers or interpreters. In JavaScript,
many researchers use test suites to fuzz JavaScript engines. Supe-
rion [68], DIE [44], and Montage [33] implement the AST level
mutations using the JavaScript test code as seed inputs. In par-
ticular, Superion finds bugs in JavaScript engines by conducting
crossover on the AST sub-trees of the testing code. DIE advances
the mutation by restricting the types of sub-trees [44].

Test suites are also used in other domains. Jeong et al. [27] dis-
covered that popular GitHub applications commonly include test
suites, which they utilize to generate API call sequences for fuzzing.
Shamshiri et al. [55] and Bavota et al. [7] investigate how test suites
impact software maintenance.

This work uses test suites to generate end-to-end test inputs for
Node.js applications, and is orthogonal to these prior works.

Dynamic Web Application Testing. Dynamic techniques gen-
erate specific inputs for testing web applications [18, 20, 64]. In
Enemy of the State [18], server-side states are inferred by com-
paring client-side response differences. Alternatively, Navex [4]
monitors the server side by tracking session creation and database
queries. Moreover, jAk [46] and Black Widow [20] also consider
client-side events like form submissions. ProbetheProto [30] uses
dynamic taint analysis to detect client-side prototype pollution
among one million real-world websites. JSGo, on the other hand,
leverages the comprehensive test suites into a more directed testing.

9 CONCLUSION

This paper has introduced JSGo, a tool that leverages test suites to
generate end-to-end application inputs for validating vulnerabilities
in Node.js applications. Unlike existing dynamic tools, JSGo benefits
from test suites, allowing it to identify which input fields to mutate
and the values to mutate towards, even if this information is not
encoded in specifications. Our investigation into existing Node.js
applications reveals that test suites offer valuable insights into
enhancing the effectiveness of existing vulnerability validation
approaches. We use under-constrained analysis to identify source
variables and address challenges encountered when symbolically
executing modern Node.js applications. In our evaluation, JSGo
reproduced 20 out of 26 known vulnerabilities and validated 7 static
alerts in recent versions of 23 server-side Node.js applications.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
helpful suggestions and comments. The work described in this paper
was partly supported by a grant from the Research Grants Council
of the Hong Kong SAR, China (Project No.: CUHK 14209323).

REFERENCES

[1] Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano
Paraboschi. 2023. NatiSand: Native code sandboxing for JavaScript runtimes. In
Proceedings of the 26th International Symposium on Research in Attacks, Intrusions
and Defenses.

[2] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H Phung, Lieven Desmet,
and Frank Piessens. 2012. JSand: complete client-side sandboxing of third-party

Changhua Luo, Penghui Li, Wei Meng, and Chao Zhang

JavaScript without browser modifications. In Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC).

[3] Abdullah Alhamdan and Cristian-Alexandru Staicu. 2023. SandDriller: A Fully-
Automated Approach for Testing Language-Based JavaScript Sandboxes. In Pro-
ceedings of the 32nd USENIX Security Symposium (Security). Anaheim, CA, USA.

4] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. 2018.
NAVEX: Precise and Scalable Exploit Generation for Dynamic Web Applications.
In Proceedings of the 27th USENIX Security Symposium (Security). Baltimore, MD.

] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. Restler:
Stateful rest api fuzzing. In Proceedings of the 41st International Conference on
Software Engineering (ICSE). Montréal, Canada.

6] Zhihao Bai, Ke Wang, Hang Zhu, Yinzhi Cao, and Xin Jin. 2021. Runtime recovery
of web applications under zero-day redos attacks. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy (Oakland). San Francisco, CA, USA.

] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. 2012. An empirical analysis of the distribution of unit test smells and
their impact on software maintenance. In 2012 28th IEEE international conference
on software maintenance (ICSM). IEEE.

[8] bcoe. 2024. ¢8 - native V8 code-coverage. https://www.npmjs.com/package/c8.

[9] Masudul Hasan Masud Bhuiyan, Adithya Srinivas Parthasarathy, Nikos Vasilakis,
Michael Pradel, and Cristian-Alexandru Staicu. 2023. SecBench. js: An executable
security benchmark suite for server-side JavaScript. In Proceedings of the 45th
International Conference on Software Engineering (ICSE). Melbourne, Australia.

[10] Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS). Dallas, TX, USA.

[11] Brainhub. 2023. Famous Node JS Apps. https://brainhub.eu/library/famous-
apps-built-with-nodejs.

[12] Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti, and Gabriele
Tolomei. 2019. Mitch: A machine learning approach to the black-box detection of
CSRF vulnerabilities. In 2019 IEEE European Symposium on Security and Privacy.

[13] Libo Chen, Yanhao Wang, Quanpu Cai, Yunfan Zhan, Hong Hu, Jiagi Linghu,
Qinsheng Hou, Chao Zhang, Haixin Duan, and Zhi Xue. 2021. Sharing more and
checking less: Leveraging common input keywords to detect bugs in embedded
systems. In Proceedings of the 30th USENIX Security Symposium (Security). Virtual
Event.

[14] code intelligence. 2024. CVE-2023-36665. https://www.code-intelligence.com/
blog/cve-protobufjs-prototype-pollution-cve-2023-36665.

[15] code intelligence. 2024. CVE-2024-39853. https://gist.github.com/mestrtee/
840f5d160aab4151bd0451cfb822e6b5.

[16] codeql. 2024. Discover vulnerabilities across a codebase with CodeQL. https:
//codeql.github.com/.

[17] dev.to. 2023. Securing Your Node.js Apps by Analyzing Real-World Command
Injection Examples. https://dev.to/lirantal/securing-your-nodejs-apps-by-
analyzing-real-world-command-injection-examples- 1116.

[18] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna.
2012. Enemy of the state: A state-aware black-box web vulnerability scanner.
In Proceedings of the 21st USENIX Security Symposium (Security). Bellevue, WA,
USA.

[19] Wenlong Du, Jian Li, Yanhao Wang, Libo Chen, Ruijie Zhao, Junmin Zhu, Zheng-
guang Han, Yijun Wang, and Zhi Xue. 2024. Vulnerability-oriented Testing for
RESTful APIs. (Aug. 2024).

[20] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. 2021. Black
widow: Blackbox data-driven web scanning. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy (Oakland). San Francisco, CA, USA.

[21] José Fragoso Santos, Petar Maksimovi¢, Gabriela Sampaio, and Philippa Gardner.
2019. JaVerT 2.0: Compositional symbolic execution for JavaScript. Proceedings
of the ACM on Programming Languages (Jan. 2019).

[22] Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent
REST API data fuzzing. In Proceedings of the 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). Sacramento, CA, USA.

[23] Emre Giiler, Sergej Schumilo, Moritz Schloegel, Nils Bars, Philipp Gorz, Xinyi Xu,
Cemal Kaygusuz, and Thorsten Holz. 2024. Atropos: Effective Fuzzing of Web
Applications for Server-Side Vulnerabilities. In Proceedings of the 33rd USENIX
Security Symposium (Security). Philadelphia, PA, USA.

[24] infosecinstitute. 2024. Dictionary attack using Burp Suite. https://www.
infosecinstitute.com/resources/hacking/dictionary-attack-using-burp-suite/.

[25] istanbuljs. 2024. Istanbul’s state of the art command line interface. https:
//www.npmjs.com/package/nyc.

[26] Jasmine. 2024. Jasmine is a Behavior Driven Development testing framework for
JavaScript. https://github.com/jasmine/jasmine.

[27] Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon, Junsik Kim, Intae Jeon,
Taesoo Kim, WooChul Shim, and Yong Ho Hwang. 2023. Utopia: Automatic gen-
eration of fuzz driver using unit tests. In Proceedings of the 44th IEEE Symposium
on Security and Privacy (Oakland). San Francisco, CA, USA.

[28] Jest. 2024. Jest is a delightful JavaScript Testing Framework with a focus on
simplicity. https://jestjs.io/.

—_

o

—_

—_
~

https://www.npmjs.com/package/c8
https://brainhub.eu/library/famous-apps-built-with-nodejs
https://brainhub.eu/library/famous-apps-built-with-nodejs
https://www.code-intelligence.com/blog/cve-protobufjs-prototype-pollution-cve-2023-36665
https://www.code-intelligence.com/blog/cve-protobufjs-prototype-pollution-cve-2023-36665
https://gist.github.com/mestrtee/840f5d160aab4151bd0451cfb822e6b5
https://gist.github.com/mestrtee/840f5d160aab4151bd0451cfb822e6b5
https://codeql.github.com/
https://codeql.github.com/
https://dev.to/lirantal/securing-your-nodejs-apps-by-analyzing-real-world-command-injection-examples-1ll6
https://dev.to/lirantal/securing-your-nodejs-apps-by-analyzing-real-world-command-injection-examples-1ll6
https://www.infosecinstitute.com/resources/hacking/dictionary-attack-using-burp-suite/
https://www.infosecinstitute.com/resources/hacking/dictionary-attack-using-burp-suite/
https://www.npmjs.com/package/nyc
https://www.npmjs.com/package/nyc
https://github.com/jasmine/jasmine
https://jestjs.io/

Test Suites Guided Vulnerability Validation for Node.js Applications

[29]

[30

(31

[32]

[33]

[34

[35]

[36]

[37

[38

[39]

[40

(41

[42]

[43

[44]

[45]

[46

[47]

[48

[49

[50]

«
—

[52]

Mingqing Kang, Yichao Xu, Song Li, Rigel Gjomemo, Jianwei Hou, VN Venkatakr-
ishnan, and Yinzhi Cao. 2023. Scaling javascript abstract interpretation to detect
and exploit node. js taint-style vulnerability. In Proceedings of the 44th IEEE
Symposium on Security and Privacy (Oakland). San Francisco, CA, USA.

Zifeng Kang, Song Li, and Yinzhi Cao. 2022. Probe the Proto: Measuring Client-
Side Prototype Pollution Vulnerabilities of One Million Real-world Websites.. In
Proceedings of the 2022 Annual Network and Distributed System Security Sympo-
sium (NDSS). San Diego, CA, USA.

Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing the
attack surface of node.js applications. In 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID).

Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2023. Sok:
Taxonomy of attacks on open-source software supply chains. In Proceedings of
the 44th IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA,
USA.

Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020. Montage: A
neural network language Model-Guided JavaScript engine fuzzer. In Proceedings
of the 29th USENIX Security Symposium (Security). Virtual Event.

Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2022. Mining node. js
vulnerabilities via object dependence graph and query. In Proceedings of the 31st
USENIX Security Symposium (Security). Boston, MA, USA.

Yeting Li, Yecheng Sun, Zhiwu Xu, Jialun Cao, Yuekang Li, Rongchen Li, Haiming
Chen, Shing-Chi Cheung, Yang Liu, and Yang Xiao. 2022. RegexScalpel: Regular
Expression Denial of Service (ReDoS) Defense by Localize-and-Fix. In Proceedings
of the 31st USENIX Security Symposium (Security). Boston, MA, USA.

Yinxi Liu, Mingxue Zhang, and Wei Meng. 2021. Revealer: Detecting and exploit-
ing regular expression denial-of-service vulnerabilities. In Proceedings of the 42nd
IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA, USA.
Zhengyu Liu, Kecheng An, and Yinzhi Cao. 2024. Undefined-oriented Program-
ming: Detecting and Chaining Prototype Pollution Gadgets in Node. js Template
Engines for Malicious Consequences. In Proceedings of the 45th IEEE Symposium
on Security and Privacy (Oakland). San Francisco, CA, USA.

Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE: practical
symbolic execution of standalone JavaScript. In Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Software.
Changhua Luo, Wei Meng, and Penghui Li. 2023. SelectFuzz: Efficient Directed
Fuzzing with Selective Path Exploration. In Proceedings of the 44th IEEE Sympo-
sium on Security and Privacy (Oakland). San Francisco, CA, USA.

Chenyang Lyu, Jiacheng Xu, Shouling Ji, Xuhong Zhang, Qinying Wang, Binbin
Zhao, Gaoning Pan, Wei Cao, Peng Chen, and Raheem Beyah. 2023. MINER: A
Hybrid Data-Driven Approach for REST API Fuzzing. In Proceedings of the 32nd
USENIX Security Symposium (Security). Anaheim, CA, USA.

Mocha. 2024. Mocha is a feature-rich JavaScript test framework running on
Node.js and in the browser. https://mochajs.org/.

Philip Oliver, Jens Dietrich, Craig Anslow, and Michael Homer. 2024. Crash]JS: A
Node]S Benchmark for Automated Crash Reproduction. In 2024 IEEE/ACM 21st
International Conference on Mining Software Repositories (MSR). IEEE.

Harun Oz, Abbas Acar, Ahmet Aris, Giiliz Seray Tuncay, Amin Kharraz, and
Selcuk Uluagac. 2024. (In) Security of File Uploads in Node. js. In Proceedings of
the Web Conference (WWW). Singapore.

Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2023. Fuzzing
javascript engines with aspect-preserving mutation. In Proceedings of the 44th
IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA, USA.
parse community. 2024. Parse Server for Node.js / Express. https://github.com/
parse-community/parse-server.

Giancarlo Pellegrino, Constantin Tschiirtz, Eric Bodden, and Christian Rossow.
2015. jak: Using dynamic analysis to crawl and test modern web applications. In
Proceedings of the 18th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID). Kyoto, Japan.

Andrey Petukhov and Dmitry Kozlov. 2008. Detecting security vulnerabilities in
web applications using dynamic analysis with penetration testing. Computing
Systems Lab, Department of Computer Science, Moscow State University (2008).
Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and Shriram Krish-
namurthi. 2011. ADsafety: Type-Based Verification of JavaScript Sandboxing. In
Proceedings of the 20th USENIX Security Symposium (Security). San Francisco, CA,
USA.

portswigger. 2024. Burp Suite - Application Security Testing Software. https:
//portswigger.net/burp.

portswigger. 2024. Small to mid-size business cybersecurity solutions. https:
//portswigger.net/organizations/small-business- security.

primereact. 2023. The Most Complete React Ul Component Library. https:
//github.com/primefaces/primereact.

Jeremy Rack and Cristian-Alexandru Staicu. 2023. Jack-in-the-box: An Empirical
Study of JavaScript Bundling on the Web and its Security Implications. In Pro-
ceedings of the 30th ACM Conference on Computer and Communications Security

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

(CCS). Copenhagen, Denmark.
Ville Santala. 2022. Automated Testing in a CI/CD pipeline: node. js and react

software project. (2022).
José Fragoso Santos, Petar Maksimovi¢, Théotime Grohens, Julian Dolby, and

Philippa Gardner. 2018. Symbolic execution for JavaScript. In Proceedings of the
20th International Symposium on Principles and Practice of Declarative Program-
ming.

Sina Shamshiri, José Miguel Rojas, Juan Pablo Galeotti, Neil Walkinshaw, and
Gordon Fraser. 2018. How do automatically generated unit tests influence soft-
ware maintenance?. In 2018 IEEE 11th international conference on software testing,
verification and validation (ICST). IEEE.

Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. 2023. Silent
spring: Prototype pollution leads to remote code execution in Node. js. In Pro-
ceedings of the 32nd USENIX Security Symposium (Security). Anaheim, CA, USA.
Mikhail Shcherbakov, Paul Moosbrugger, and Musard Balliu. 2024. Unveiling the
Invisible: Detection and Evaluation of Prototype Pollution Gadgets with Dynamic
Taint Analysis. In Proceedings of the Web Conference (WWW). Singapore.
snyk.io. 2024. CVE-2023-26158. https://security.snyk.io/vuln/SNYK-JS-MOCK]JS-
6051365.

Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: a study
of ReDoS vulnerabilities in JavaScript-based web servers. In Proceedings of the
27th USENIX Security Symposium (Security). Baltimore, MD, USA.
Cristian-Alexandru Staicu, Michael Pradel, and Ben Livshits. 2018. Understanding
and automatically preventing injection attacks on Node. js. In Proceedings of the
2018 Annual Network and Distributed System Security Symposium (NDSS). San
Diego, CA, USA.

statista.com. 2023. Most used web frameworks among developers worldwide,
as of 2023. https://www.statista.com/statistics/1124699/worldwide-developer-
survey-most-used-frameworks-web/.

swagger. 2024. OpenAPI Specification. https://swagger.io/specification/.

Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang Liu, and Min Yang. 2023.
SyzDirect: Directed greybox fuzzing for linux kernel. In Proceedings of the 30th
ACM Conference on Computer and Communications Security (CCS). Copenhagen,
Denmark.

Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel, Giovanni Vigna, Christopher
Kruegel, Ruoyu Wang, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé. 2023.
Toss a fault to your witcher: Applying grey-box coverage-guided mutational
fuzzing to detect sql and command injection vulnerabilities. In Proceedings of
the 44th IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA,
USA.

Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. 2021. Preventing dynamic
library compromise on node. js via rwx-based privilege reduction. In Proceedings
of the 28th ACM Conference on Computer and Communications Security (CCS).
Virtual Event, Korea.

W3Techs. 2023. Node.js Statistics: The Updated Guide on Node.js Usage and
Trends. https://www.bacancytechnology.com/blog/nodejs-statistics.
W3Techs. 2024. Snyk security. https://snyk.io/.

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
aware greybox fuzzing. In Proceedings of the 41st International Conference on
Software Engineering (ICSE). Montréal, Canada.

Wenya Wang, Xingwei Lin, Jingyi Wang, Wang Gao, Dawu Gu, Wei Lv, and Jiashui
Wang. 2023. Hodor: Shrinking attack surface on node. js via system call limitation.
In Proceedings of the 30th ACM Conference on Computer and Communications
Security (CCS). Copenhagen, Denmark.

Xinyi Wang, Cen Zhang, Yeting Li, Zhiwu Xu, Shuailin Huang, Yi Liu, Yican
Yao, Yang Xiao, Yanyan Zou, Yang Liu, et al. 2023. Effective ReDoS Detection
by Principled Vulnerability Modeling and Exploit Generation. In Proceedings of
the 44th IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA,
USA.

Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang Yang, Hong Hu, Guofei Gu,
and Wenke Lee. 2021. Abusing hidden properties to attack the node.js ecosystem.
In Proceedings of the 30th USENIX Security Symposium (Security). Virtual Event.
Feng Xiao, Zheng Yang, Joey Allen, Guangliang Yang, Grant Williams, and Wenke
Lee. 2022. Understanding and Mitigating Remote Code Execution Vulnerabilities
in Cross-platform Ecosystem. In Proceedings of the 29th ACM Conference on
Computer and Communications Security (CCS). Los Angeles, CA, USA.

Renjun Ye, Liang Liu, Simin Hu, Fangzhou Zhu, Jingxiu Yang, and Feng Wang.
2021. JSLIM: Reducing the known vulnerabilities of JavaScript application by
debloating. In International Symposium on Emerging Information Security and
Applications. Springer.

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In Proceedings of the 28th USENIX Security Symposium (Security).
Santa Clara, CA, USA.

https://mochajs.org/
https://github.com/parse-community/parse-server
https://github.com/parse-community/parse-server
https://portswigger.net/burp
https://portswigger.net/burp
https://portswigger.net/organizations/small-business-security
https://portswigger.net/organizations/small-business-security
https://github.com/primefaces/primereact
https://github.com/primefaces/primereact
https://security.snyk.io/vuln/SNYK-JS-MOCKJS-6051365
https://security.snyk.io/vuln/SNYK-JS-MOCKJS-6051365
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://swagger.io/specification/
https://www.bacancytechnology.com/blog/nodejs-statistics
https://snyk.io/

	Abstract
	1 Introduction
	2 A Survey on Test-Suites
	3 Motivation and Challenges
	3.1 Limitation of Existing Works
	3.2 Research Goals and Challenges

	4 JSGo
	4.1 Workflow
	4.2 Selecting Base Test Suites and HTTP Requests
	4.3 Trace-Guided Mutation
	4.4 Vulnerability Validation

	5 Implementation
	5.1 Static Data-Flow Analysis
	5.2 Type Consistency

	6 Evaluation
	6.1 Dataset and Setup
	6.2 Reproducing Known Vulnerabilities
	6.3 Validating Static Detection Results

	7 Discussion
	8 Related Work
	9 Conclusion
	References

