
Understanding and Detecting Performance Bugs in
Markdown Compilers

Penghui Li, Yinxi Liu, and Wei Meng
Chinese University of Hong Kong

{phli, yxliu, wei}@cse.cuhk.edu.hk

Abstract—Markdown compilers are widely used for translating
plain Markdown text into formatted text, yet they suffer from
performance bugs that cause performance degradation and
resource exhaustion. Currently, there is little knowledge and
understanding about these performance bugs in the wild. In
this work, we first conduct a comprehensive study of known
performance bugs in Markdown compilers. We identify that the
ways Markdown compilers handle the language’s context-sensitive
features are the dominant root cause of performance bugs. To
detect unknown performance bugs, we develop MDPERFFUZZ, a
fuzzing framework with a syntax-tree based mutation strategy
to efficiently generate test cases to manifest such bugs. It equips
an execution trace similarity algorithm to de-duplicate the bug
reports. With MDPERFFUZZ, we successfully identified 216
new performance bugs in real-world Markdown compilers and
applications. Our work demonstrates that the performance bugs
are a common, severe, yet previously overlooked security problem.

I. INTRODUCTION

Markdown is an easy-to-use domain-specific markup lan-

guage. Markdown compilers analyze input text to generate

formatted text with decorated styles according to the Mark-

down language syntaxes. Because of the flexibility Markdown

offers, Markdown compilers are commonly included in many

application scenarios such as code hosting software, content

management systems (CMSs), online Markdown editors, etc.
For example, two leading code hosting providers—GitHub

and GitLab—support Markdown document compilation and

rendering at both the server end [1, 2] and the client end [3, 4];

popular CMSs like WordPress [5] and Drupal [6] also provide

support for Markdown content rendering in the posts with

their server-side Markdown compilers; among the Alexa top 1

million websites [7] are many online Markdown editors such

as StackEdit [8].

Due to the wide application of Markdown compilers, the bugs

in them can potentially impact many services and their users. In

particular, Markdown compilers could have performance bugs,

which have recently become an emerging attack vector for

launching denial-of-service (DoS) attacks [9–11]. Such bugs

could cause excessive resource consumption and negatively

affect user experiences. By specially crafting inputs to exploit a

performance bug in a Markdown compiler running on a server,

attackers can exhaust the server’s computing resources (e.g.,
memory and CPU) and significantly impair the application’s

availability for legitimate users. Some performance bugs require

only low-bandwidth traffic to exploit and can be leveraged

to easily overwhelm a target system [12–14]. Detecting

performance bugs in Markdown compilers could help mitigate

or even prevent such DoS attacks to safeguard the normal

operation of many popular and critical services on the Internet.

Prior works have studied and revealed the performance bugs

in different types of software such as regular expression engines

[15, 16], desktop software [17], and Android applications

[18]. To the best of our knowledge, performance bugs in

Markdown compilers have not been well investigated and

understood yet. To this end, we conduct a comprehensive study

of the performance bugs in Markdown compilers to answer

the following research questions:

• What are the main causes of performance bugs in Markdown

compilers?

• How widespread are such bugs in the wild?

• How severe are such bugs?

We empirically analyze 49 known performance bugs in

mainstream Markdown compilers and thoroughly summarize

their characteristics. We observe that there has been a contin-

uous growth in the number of reported performance bugs in

the past 3 years. We further identify that the dominant root

causes of these performance bugs are the specific ways that
Markdown compilers handle the language’s context-sensitive
features. In particular, Markdown compiler developers often

choose to implement these language features by backtracking.

The backtracking strategies can be abused or exploited with

specially crafted yet syntactically legitimate inputs for causing

worst-case performance issues. We also find that the developers

usually mitigate such exploitation by enforcing a hard limit on

the maximum number of backtracking steps, which, however,

limits the intended functionality of the Markdown compilers.

We then seek to detect unknown performance bugs in

Markdown compilers. We focus on CPU-exhaustion perfor-

mance bugs, which are the dominant type of performance

bugs. In particular, we consider leveraging fuzz testing—the

go-to approach—to detect performance bugs. Fuzzing is free

from some limitations of static analysis techniques e.g., high

false positives [17, 19, 20]. It has been extensively applied

to detect thousands of vulnerabilities in various real-world

software [21–23]. Existing fuzzers for performance bugs like

SlowFuzz [24], PerfFuzz [25] and SAFFRON [26] are not

designed for domain-specific languages such as Markdown

hence cannot efficiently generate inputs to thoroughly exercise

the compilers. To efficiently fuzz Markdown compilers, a

grammar-aware approach would be needed. Therefore, we study

20
21

 3
6t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

78
-1

-6
65

4-
03

37
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

A
SE

51
52

4.
20

21
.9

67
86

11

http://crossmark.crossref.org/dialog/?doi=10.1109%2FASE51524.2021.9678611&domain=pdf&date_stamp=2022-06-24

the CommonMark [27] specification and model the Markdown

grammar. We then extend existing fuzzers with a syntax-tree

based mutation strategy [28] specifically for Markdown. Such

a mutation strategy could preserve useful Markdown syntaxes

during the input mutation process, and help efficiently generate

high-quality inputs to fuzz Markdown compilers.

To detect CPU-exhaustion performance bugs in Markdown

compilers, we monitor the program execution under the gener-

ated inputs. We employ a statistical model using Chebyshev

inequality to label abnormal cases as performance bugs. Like

in prior works [24, 25], our approach can potentially lead

to duplicate bug reports because different yet highly similar

inputs could actually trigger the same performance bug. It is

time-consuming and impractical to manually de-duplicate them.

Yet it is non-trivial to automate this process in the scenario

of performance bugs. Existing bug de-duplicating methods in

fuzzing use coverage profile and call stack snapshots, which

are not applicable to performance bugs. For example, it is hard

to obtain an accurate and deterministic call stack snapshot that

represents the run-time program state when a performance bug

is triggered. Following prior trace analysis works [29–32], we

propose an execution trace similarity algorithm to de-duplicate

the reports. Specifically, we represent the execution trace per

report into a vector, compute the cosine similarity [33] between

vector pairs, and classify highly similar vectors (bug reports)

as the same bug.

We integrate the above-mentioned techniques into

MDPERFFUZZ, a fuzzer specialized in detecting performance

bugs in Markdown compilers implemented in C/C++.

With MDPERFFUZZ, we successfully detected 7 new

performance bugs in 2 standalone Markdown compilers.

It also outperformed the state-of-the-art works with more
detected unknown performance bugs, higher performance

slowdown, and higher code coverage. To detect performance

bugs in Markdown compilers and plugins that are not written

in C/C++, we further summarized the exploits generated

by MDPERFFUZZ into 45 attack patterns. By applying

these patterns we found 209 new performance bugs, which

could potentially affect millions of websites and their users.

Our evaluation results demonstrate that such performance

bugs were widespread and they existed in the latest stable

versions of almost all Markdown compilers we tested. We

further showed that such bugs can be easily exploited using

only low-rate traffic to launch DoS attacks against a server,

demonstrating the severity of this emerging threat.

We also revealed that vulnerable Markdown compilers imple-

mented in different programming languages could be exploited

by the same inputs because different compiler developers

implemented the compilers in exactly the same buggy ways.

We are in the process of responsibly disclosing our findings to

the affected parties. At the time of writing, 25 bugs have been

acknowledged and one new CVE ID has been assigned. To

facilitate future research, we release MDPERFFUZZ as an open-

source software at https://github.com/cuhk-seclab/mdperffuzz.

Researchers can easily build on MDPERFFUZZ their tools to

study performance issues in the compilers of other domain-

specific languages such as Latex and Wikitext.

In summary, we make the following contributions.

• We presented the first empirical study of the performance

bugs in Markdown compilers.

• We developed MDPERFFUZZ to generate high-quality test

inputs to detect performance bugs in Markdown compilers.

• We proposed an execution trace similarity algorithm to

effectively de-duplicate performance bugs.

• We detected 175 new performance bugs in 17 Markdown

compilers and 41 new performance bugs in 4 popular real-

world applications.

II. BACKGROUND

A. Markdown

Created by Swartz and John Gruber in 2004, Markdown

has been a prevalent markup language for creating formatted

text from plain text. To date, CommonMark [27] has become

a well-recognized Markdown specification in the community.

We introduce some of its important features below.

• Valid Markdown documents. Any sequence of characters is

a valid Markdown document, where a character is usually a

Unicode code point.

• Text stylization. Markdown provides diverse syntax supports

for stylizing the text. Specifically, it treats asterisks (*) and

underscores (_) as indicators of emphasis of the enclosed

text. A pair of asterisks or underscores (e.g., '*text emphasis
*') represents text emphasis. A pair of double asterisks or

underscores (e.g., '__text bold__') denotes text bold (strong).
• Links. Markdown allows inserting links with the format of

'[demo](url)'. The [demo] is the link label and is the formatted

preview text. The (url) is the link target that directs to either

internal or external resources specified by the URL (url).

• HTML blocks. Markdown documents use HTML blocks to

insert raw HTML contents. The HTML blocks are enclosed

with start and end conditions such as '<script> </script>', '

<![CDATA[]]>', '<? ?>', and '<!A >'.

B. Markdown Compilers

Markdown compilers take valid Markdown strings as inputs

and output formatted text, e.g., HTML documents. The Mark-

down syntax tokens in the input strings are interpreted into

the ones in the target format. Markdown compilers generally

take three steps to analyze the input strings: (1) Markdown

compilers first scan the input strings and group the characters

into tokens in the lexical analysis; (2) they then analyze the

tokens for their syntactical and semantic meanings in the syntax
and semantic analysis; (3) based on the results of the previous

step, they further produce the final code (e.g., HTML) in

the code generation step. Unlike other compilers (e.g., GCC),

Markdown compilers usually do not have the intermediate code

optimization step since Markdown is a markup language.

Markdown has some context-sensitive features [27]. For the

same token, different behaviors can be exhibited depending on

the analysis context (i.e., the other tokens in the same input). To

handle such features, Markdown compilers have to record the

relevant compilation information as the context to determine

how to process a token. Sometimes, due to the nature of the

Markdown language design, several possible choices (options)

are applicable for interpreting a token in a given context. For

example, the token of double asterisks (**) can possibly be the

open delimiter of text bold syntax or just two asterisks in plain

text.
To support such features, modern compilers search in

multiple possible options with a default order. A previously

chosen option could become invalid when more information is

collected along with the analysis on the input strings. Compiler

developers usually use the strategy of backtracking to explore

a different choice. The compilers continue this strategy till a

correct option is ultimately determined. For example, when

analyzing the input string '**text bold', Markdown compilers

usually first prioritize the choice of open delimiter of text

bold syntax for the token (**). When no corresponding close

delimiter for the token can be found, the compilers backtrack

and try other options for the token (**), e.g., plain text. Since

any sequence of characters in Markdown is valid, plain text is

the default last option in the compilers for the tokens.

C. Performance Bugs in Markdown Compilers
Performance bugs could degrade a program’s performance

and waste computational resources. Usually, people define

performance bugs as software defects where relatively simple

source-code changes can significantly optimize the execution

of the software while preserving the functionality [17, 34, 35].

There can be several different performance issues regarding

different categories of resources (e.g., CPU [12, 14], memory

[36]). In the past, several publicized operation incidents were

caused by performance bugs, consequently, many software

projects were abandoned [17, 37].
Performance bugs in Markdown compilers could particularly

impact end-user experiences. Exploitation of client-side perfor-

mance bugs can lead to excessive resource consumption and

lower responsiveness. What is worse, Server-side performance

bugs can be exploited by attackers for DoS attacks, which can

impair the availability of critical services [10]. For example,

a performance bug MDPERFFUZZ detected had existed in

all versions of GitLab Community Edition and Enterprise

Edition before 13.12.2 [9]. This bug allows an attacker to

cause unrestricted server resource consumption with a specially

crafted issue or merge request. It could potentially lead to DoS

and impact many other users concurrently accessing the GitLab

server.

III. UNDERSTANDING PERFORMANCE BUGS IN

MARKDOWN COMPILERS

In this section, we present an empirical study on several

known performance bugs in mainstream Markdown compilers

to understand their characteristics.

A. Data Collection
We investigate performance bugs in the CommonMark spec-

ification [27] and 4 representative Markdown compilers chosen

TABLE I: The existing performance bugs included in our study. Lang.
means the underlying programming language for implementing the
Markdown compiler.

Software Lang. # Bugs Time Periods

CommonMark-spec N/A 13 10/26/2014 - 02/17/2020
cmark C 13 01/14/2017 - 12/20/2020
MD4C C 6 03/10/2019 - 09/10/2019
commonmark.js JS 9 09/28/2017 - 08/13/2019
markdown-it JS 8 08/14/2019 - 11/20/2020

from the recommended implementations of the specification. In

particular, cmark1 and MD4C2 are two high-performance Mark-

down compilers written in C. commonmark.js3 and markdown-

it4 are two Node.js packages used in both client-side and

server-side applications. We do not consider the software that

uses Markdown compilers as one of its sub-components/plugins

(e.g., GitLab), because such software usually does not modify

the internal workflow of the included compilers. We limit our

manual analysis to only 4 representative Markdown compilers

because the analysis is quite time-consuming. Furthermore,

we find that our current software set already allows us to

characterize the bugs and extract some general features, which

we will present later in this section.

In these Markdown compilers, we manually collected 49

distinct performance bugs from their public bug disclosure chan-

nels and their GitHub repository issues. The bug distribution

is presented in Table I. We found all these performance bugs

were abusing the CPU resources instead of other resources like

memory. This suggests CPU-exhaustion performance bugs are

the dominant type of performance bugs. We next characterize

the 49 performance bugs and present our findings.

B. Bug Disclosure Methods

Detecting and disclosing performance bugs is an important

security and software engineering task. We investigate how

performance bugs in Markdown compilers are usually detected

and exposed by analyzing bug reports and relevant online

discussions. We observe that manual analysis has been the

dominant approach to hunting performance bugs in Markdown

compilers. Some bug reports suggested that the security analysts

found the bugs by crafting special test inputs according to the

CommonMark specification (e.g., [38]). Specifically, 44 out of

the 49 performance bugs were identified and reported through

manual analysis or testing. Only 5 performance bugs were

detected by automated tools like OSS-fuzz [22]. This motivates

us to develop better automated techniques to detect such bugs.

C. Disclosure and Patch Time

To understand the trend of performance bugs, we analyze

the disclosure time of the 49 bugs. We depict the number

of performance bugs along the time they were disclosed in

1https://github.com/commonmark/cmark
2https://github.com/mity/md4c
3https://github.com/commonmark/commonmark.js
4https://github.com/markdown-it/markdown-it

Fig. 1: The number of performance bug reports over time from
September 2014 to December 2020.

Figure 1. We observe that few bugs were reported before early

2015, and the number of reported bugs had been gradually

growing from early 2018 till late 2020. In particular, 28

(57.14%) out of the 49 performance bugs were disclosed

between April 2018 and December 2020 (inclusive, 32 months);

21 (42.86%) bugs were reported before 2018. It reveals that

such bugs had been gradually drawing the attention from the

compiler developers and security analysts.

We further analyze the time it took to release a patch since

a bug was initially reported. We were able to successfully

determine the time for 32 performance bugs. For the rest

bugs, either we did not find the explicit bug patch time

(e.g., [39]) or they have not been patched yet (e.g., [40]).

We find that the average duration for patching performance

bugs is 19 days. Further, 23 (71.88%) bugs were patched

within 30 days. We particularly investigated those bugs that

took much longer patch time, e.g., more than 4 months. We

observed that they were usually related to the ambiguity of

the CommonMark specification. Thus their patches usually

require some work from both the compiler developers and the

specification maintainers. Some of the bugs and patches have

led to the modifications of the language specification.

D. Root Causes

Identifying the common root causes of real-world perfor-

mance bugs can benefit potential future research and software

developments. We manually analyzed 49 performance bugs

and successfully figured out the root causes for 39 bugs. We

classify the root causes into three categories. A bug is assigned

to multiple categories if it has multiple major causes.

R1: Worst-cases in super-linear algorithms. Some normal

algorithms implemented in Markdown compilers have super-

linear worst-case complexity [24, 25]. Attackers can craft inputs

to trigger the worst-case behaviors and lead to performance

issues. In particular, supporting some context-sensitive features

in Markdown compilers is prone to introducing performance

bugs. The majority (25 out of 39) of bugs were related to such

worst-case behaviors.

Some Markdown syntaxes (e.g., links, emphasis and strong

emphasis, HTML blocks) are related to the language’s context-

sensitive features. As discussed in §II-B, supporting context-

sensitive features in Markdown requires the compilers to

backtrack, which could take more than linear time. The

backtracking strategies can easily be abused with crafted inputs

hence lead to performance issues. For instance, links were

the primary vulnerable syntax in Markdown compilers, where

11 of the known performance bugs could be exploited with

special inputs with links. Similarly, 8 of the bugs were caused

by the buggy emphasis and strong emphasis handlers. Our

study reveals that the implementation of the context-sensitive

features in the Markdown compilers is prone to introducing

performance bugs.

One typical input pattern that exploits the context-sensitive

syntax handler to trigger performance bugs is many open tokens.

This pattern can lead the compilers to repeatedly search a

close token towards the end of the input string for each such

open token. To correct the wrong options the compilers have

selected, the compilers would normally backtrack to explore

other options. For example, deeply nested CDATA block open

delimiters can result in an excessive compilation time. When fed

with n-nested CDATA block open delimiters (e.g., '<![!CDATA[<![
CDATA[<![CDATA[...') that are not closed with the corresponding

close delimiters (i.e.,]]>) or are closed in the end of the input

string, the compilers need to compare with all tokens in the

input string to determine if an open delimiter can be closed

or not. Once the compilers find an open delimiter cannot be

closed, they switch to other possible options for that delimiter

next, for instance, the open delimiter <! in '<!A>', which cannot

be closed either. Thus the time for handling such input strings

is at least in polynomial time complexity. By providing a long

input with many such open tokens, it is simple to cost the

compiler several-second or even more execution time.

R2: Unoptimized code. Some unoptimized code in the

Markdown compilers could also lead to performance issues.

For instance, some functions do not coordinate well for certain

functionalities. We find that 9 performance bugs were caused

by such unoptimized code. Unlike the algorithms in R1, such

performance issues could be addressed by code optimization.

However, each problem needs to be separately analyzed and

fixed, which could be time-consuming. We next discuss an

example of such unoptimized code.

Minor performance issues in individual problematic functions

could accumulate when the given inputs can repeatedly trigger

the execution of such functions. For example, in one bug,

cmark calls S_find_first_nonspace() to find the first non-space

character from the current offset in a line. The function in a

second call would still search from the initial position, even

if in a previous call it has already recognized the location

of the first non-space character. This means function calls

to S_find_first_nonspace() sometimes were unnecessary. Crafted

inputs with lots of complicated and nested indents could result

in repeated invocations of this function and cause performance

bugs. The problem, however, can be solved by using better

strategies like cashing the positions of the previously found

non-space characters.

Seeds Markdown GrammarInput Mutation

Corpus RefinementCorpus Pool

Bug De-Duplication

Fitness Function

Fig. 2: The architecture of MDPERFFUZZ.

R3: Problematic implementations. Other causes of the bugs

are specific to the compiler implementations or designs. Some

compilers overlooked part of the CommonMark specification,

for example, Unicode support. This can lead to infinite loops

when unexpected inputs are provided to the compilers. Some

other bugs in this category were caused by wrong data

structures. 5 performance bugs fall into this category.

E. Patches of Performance Bugs

We investigate the patches of the performance bugs in the

Markdown compilers to understand how they were addressed.

We manage to identify the bug fix patterns for 28 performance

bugs. We present our findings below.

P1: Enforcing limits. The most common patch pattern is to

add limits for certain conditions such as the maximum depth of

the nested structure, although the CommonMark specification

does not explicitly specify any such limits. When such limits

are reached, the compilers directly regard the rest unanalyzed

inputs as plain text. Enforcing limits can prevent excessive

CPU usages caused by the worst-case exploitation with too

large test cases. However, the intended functionality might be

violated. It is also difficult to set a correct limit to prevent all

attacks while not breaking some unusual yet legitimate inputs.

Such a strategy has been applied to patch 13 out of the 28

bugs we investigate.

P2: Logic changes. Logic changes sometimes are necessary as

the bugs are caused by incorrect coordination among multiple

program components and functions. Some inefficient code snip-

pets need to be further optimized to eliminate the underlying

performance issues. For some other performance bugs caused

by incorrect regular expressions, compiler developers mainly

review and rewrite the regular expressions.

IV. MDPERFFUZZ

Though we have characterized known performance bugs,

it is unclear if there exist many unknown performance bugs

in Markdown compilers and related applications. Therefore,

we try to detect unknown performance bugs in real-world

Markdown compilers. We focus on CPU resource exhaustion

performance bugs in this work because they are the dominant

type of performance bugs.

To avoid the high false-positive rates in static analyses

[19, 20], we propose to use dynamic fuzz testing to detect and

[demo](url)

Link

demo][url)(

**

Link Label Link Target

**

Fig. 3: AST of the statement '**[demo](url)**'.

exploit performance bugs. To do so, we face two technical

challenges. First, generating Markdown documents to test

Markdown compilers and exploit the performance bugs (if

any) is naturally difficult because of the huge document

search space. Prior fuzzers [24, 25] are not very efficient

in generating the specially formatted inputs to trigger the

performance bugs in Markdown compilers (which we will

discuss in §V-C). Second, since many distinct inputs can

trigger the same performance bug, it is naturally challenging to

accurately de-duplicate the bug reports. Prior performance bug

fuzzers [24, 41] do not try to de-duplicate performance bugs.

Other fuzzers for detecting memory corruptions de-duplicate

bugs using the unique memory footprints (e.g., coverage profiles

and call stacks [42]) when the bugs are triggered, whereas

one performance bug can potentially exhibit different memory

footprints.

We overcome these challenges with MDPERFFUZZ. The

overall methodology is depicted in Figure 2. MDPERFFUZZ

follows the general fuzzing workflow and is built on top

of AFL [23]. Inside the main fuzzing loop, we particularly

design a grammar-aware syntax-tree based mutation strategy to

efficiently generate high-quality inputs (§IV-A). We first model

Markdown grammar from the CommonMark specification to

parse the test cases into abstract syntax trees (ASTs). The

mutation strategy then mutates the ASTs while preserving

the Markdown syntaxes to well exercise the diverse syntax

components of Markdown compilers. To guide the fuzzer to

detect CPU-exhaustion performance bugs, we use a fitness

function to measure if an input should be favored or not (§IV-B).

The fitness function considers both code coverage and resource

usage. To report only unique bugs, we compute the cosine

similarity between each pair of the vector representations of the

execution traces in bug reports and group highly similar reports

as duplicate ones (§IV-C). We then present the implementation

details (§IV-D).

A. Syntax-Tree Based Mutation Strategy

Above the default mutation strategies of AFL (e.g., bit flip-

ping), MDPERFFUZZ introduces a syntax-tree based mutation

strategy to better preserve the Markdown syntaxes. Due to the

complexity of Markdown language, no prior work has attempted

to formalize its grammar, which is non-trivial. We spent a

considerable amount of efforts on analyzing the CommonMark

specification and modelling the language grammar. Given the

grammar, our syntax-tree based mutation strategy parses a test

case into an AST, traverses the AST, and randomly replaces

several subtrees (treesrc) with candidate subtrees (treedst).
We construct the simplest ASTs each representing a Markdown

syntax and include them as candidates of treedst. We do

not consider the combination of multiple Markdown syntaxes

when constructing one candidate of treedst because it can be

achieved via replacing multiple treesrc. In this way, compared

to mutation strategies that randomly flipping bits, our strategy

preserves and extends the syntax of the original test case. Thus

it can efficiently construct syntactically correct new test cases

from the modified ASTs for later testing.

For example, given a test case of '**[demo](url)**', we first

parse it into the AST shown in Figure 3. We identify the basic

subtrees (i.e., 1 , 2 , 3) and randomly replace each of them

to generate new test cases. For instance, we can replace the

whole link (1) with an inline code span and produce a test

case of '**�random�**'. The newly generated test case remains

the text bold syntax but also exercises new syntax features. It

is worth noting that the default mutation strategies of AFL can

also be applied when the syntax-tree based one fails to parse

a test case.

B. Fitness Function and Performance Bug Detection

MDPERFFUZZ uses a fitness function to decide whether to

favor a test case or not. We include both the coverage and

the control flow graph (CFG) edge hit counts into the fitness

function. As in other works [22, 42], the coverage feedback

drives MDPERFFUZZ to explore more newly discovered code.

Only it, however, is not sufficient for our purpose as it does not

consider loop iterations which are crucial for detecting high-

complexity performance bugs [24]. The CFG edge hit counts,

standing for the times a CFG edge is visited under a test case,

enables MDPERFFUZZ to explore computationally expensive
paths. As stated in prior work [25], many programs (e.g., PHP

hash functions [25]) do have non-convex performance space.

We thus do not use the number of executed instructions to guide

MDPERFFUZZ because it might fail to find the performance

issues caused by local maxima. Therefore, as in the state-of-

the-art work, PerfFuzz [25], we design MDPERFFUZZ to favor

those test cases that maximize certain CFG edge hit counts

to better detect performance bugs. In this way, MDPERFFUZZ

tends to select test cases to either trigger new code or exhaust

certain CFG edges. Note that we do not use run-time CPU

usage or concrete execution time as the metric, because they

show large variations affected by many uncontrollable factors,

such as the fuzzer’s concurrent features and the characteristics

of the applications being tested.

Prior works [24, 25] rely on analysts to label performance

bugs, which is time-consuming and does not scale. We thus

design a statistical model to accurately identify performance

bugs. Our statistical model first obtains the normal program

execution behaviors, which help label abnormal ones as

performance bugs. In particular, as in [25], we compute the

total execution path length—the sum of the CFG edge hit

counts—under a test case as the metric. We first prepare

abundant random normal test cases; we feed each test case to

the testing program and obtain the corresponding execution path

length. We calculate the mean (lμ) and the standard deviation

(lσ) of the execution path lengths (li). We label a case as a

performance bug if its execution path exceeds the normal level

to a certain extent. According to Chebyshev inequality (as

shown in Equation 1), the probability of the random variable

li that is k-standard deviations away from the mean (lμ) is

normally no more than 1/k2. Since only in rare cases would

the execution path length significantly deviate from the normal

situations, we label a performance bug if its execution path

length lt is more than klσ away from the lμ (see Equation 2).

P (|li − lμ| > klσ) ≤ 1

k2
(1)

lt > lμ + klσ (2)

C. Bug De-Duplication

Though the execution path lengths under different test cases

could all meet Equation 2, they could actually trigger the same

performance bug. De-duplicating the bug reports is necessary

for a more precise result, whereas prior works [24, 25] do not

apply automated methods to de-duplicate the reports. Existing

fuzzing works identify unique bugs using the call stack for

memory corruptions (e.g., crashes). However, it does not fit

well our purposes for performance bug de-duplication. Though

we can possibly collect the call stack as well (e.g., by forcibly

terminating the program at some point), the call stacks might

not be accurate enough to represent unique bugs. This is

because the exactly critical call stack for a performance bug

can hardly be accurately exposed. Unlike memory corruption

bugs that have deterministic call stacks when the bugs are

triggered, performance bugs might exhibit diverse call stacks

depending on when to obtain them. Therefore, a better bug

de-duplication method is needed.

We propose a bug de-duplicating approach by merging

reports with similar execution traces, similar to prior trace

clustering methods [29–32]. The high-level idea is that different

exploiting inputs of the same performance bug should exhibit

similar execution traces, i.e., most CFG edges are visited in

similar frequencies. In particular, we apply the test cases in

the reports to the instrumented target software and obtain the

CFG edge hit count (i.e., number of times a CFG edge is

visited in a test) for each edge. We summarize the unique CFG

edges that are visited in all reports during fuzz testing into an

n-dimensional vector space, where n is the total number of

unique CFG edges being visited and each dimension in the

vector space corresponds to a CFG edge. In other words, we

construct an edge-hit-count vector, e.g., #»v = (c1, c2, ..., cn),
for each report. Each dimension (ci) represents the hit count

of the ith CFG edge in that report. To consider if two reports

point to the same bug, we compute the cosine similarity [33]

between their edge-hit-count vectors (e.g., #»v , #»v ′), as shown

in Equation 3. Cosine similarity is based on the inner product

of the two vectors and thus naturally assigns higher weights

to the dimensions with larger values (i.e., edges visited most).

TABLE II: Bug detection results of the Markdown compilers in C.
Rep. is the reports from the fuzzer. U-Rep. is the unique reports after
de-duplication. Con. is the manually confirmed bugs.

Software Lang. # Rep. # U-Rep. # Con.

cmark (0.29.0) C 1321 7 4
MD4C (0.4.7) C 239 3 0
cmark-gfm (0.29.0) C 981 4 3

Therefore, we calculate the cosine similarity between every

two reports and merge reports as the same bug if the cosine

similarity between their corresponding edge-hit-count vectors

exceeds a threshold.

cosine(#»v , #»v ′) =
#»v · #»v ′

| #»v || #»v ′| =

∑n
i=1 cic

′
i√∑n

i=1 c
2
i

√∑n
i=1 c

′2
i

(3)

D. Implementation

We implemented the fuzzing part of MDPERFFUZZ on top of

an AFL-based fuzzer, PerfFuzz [25]. Specifically, we compiled

a simplified Markdown grammar via ANTLR4 [43] into a

Markdown parser; then we introduced the syntax-tree based

mutation strategy as an extension that can be flexibly plugged

in; we enhanced a C/C++ compiler to instrument the testing

software and modified AFL’s showmap functionality to trace

the execution on the instrumented applications to obtain the

CFG edge hit counts for bug de-duplication.

V. DETECTING PERFORMANCE BUGS VIA MDPERFFUZZ

In this section, we investigate the prevalence of performance

bugs in the wild. We apply MDPERFFUZZ to detect perfor-

mance bugs in several mainstream Markdown compilers.

A. Experimental Setup

Dataset. Since MDPERFFUZZ employs an AFL-based fuzzer,

it is only capable to analyze Markdown compilers implemented

in C/C++. Therefore, we select all the 3 Markdown compilers

in C in the recommended implementation list of CommonMark

specification [27] and list them in the first column of Table II.

Experiments. Each Markdown compiler is first instrumented

using our enhanced C compiler. We then apply MDPERFFUZZ

to detect performance bugs on the instrumented Markdown

compilers. We apply the PoCs collected in §III as the initial

seeds and configure MDPERFFUZZ to use a single process, a

timeout of 6 hours, and an input size of 200 bytes. After

our preliminary study, we empirically set k to 5 and the

cosine similarity threshold to 0.91 for all testing software.

All experiments described in this section are conducted on a

server running Debian GNU/Linux 9, with an Intel Xeon CPU

and 96GB RAM.

B. Results

We present the performance bug detection results in Table II.

Duplicate performance bug reports are naturally common

during fuzzing. The fuzzing part of MDPERFFUZZ reported

2,541 cases in total and our de-duplicating algorithm merged

them into 14 distinct reports. We observe that all the 14 cases

did successfully slow down the Markdown compilers by from

2.31× to 7.28× compared to normal-performance cases.

We further manually check the reports to validate the

performance bugs. Since MDPERFFUZZ limits the input size

like in other works [22, 24, 25] due to the concerns of

large search space, our manual analysis attempts to identify

the severity of the performance slowdown in more realistic

scenarios, e.g., larger input sizes of thousands of characters.

To this end, we first identify the exploit input patterns in the

reports that exhaust the run-time resources. With the patterns,

we further construct larger test cases to verify the performance

issues in practice. Finally, 7 cases in 2 Markdown compilers

were confirmed as performance bugs, including 4 new bugs,

after our manual analysis. We are in the process of reporting

the new bugs to the concerned vendors. At the time of writing,

1 bug has been well acknowledged.

We found no bug in MD4C. The developers of MD4C

explicitly mention that they seriously considered performance

as one of their main focuses during the development. Therefore,

the performance bugs could be avoided with domain knowledge

and special care, which are often difficult for most developers.

We have investigated those false-positive cases to understand

the reasons. We find that the unique buggy cases reported

by MDPERFFUZZ indeed triggered performance issues, i.e.,
those test cases led to longer execution paths. However, the

larger attack inputs we constructed manually did not manifest

such performance issues. This is because in our experiments

we let MDPERFFUZZ explore only small-size test cases (e.g.,
hundreds of bytes) to limit the search space. As we discussed

in §III-E, developers might choose to patch the performance

bugs by enforcing certain limits (e.g., P1). Such a strategy

guarantees that there is no performance issue in large-size test

cases; small-size test cases, however, can still trigger worst-case

behaviors. We find all the false positives were caused because

of this.

C. Comparison

We compare MDPERFFUZZ with two state-of-the-art works,

SlowFuzz [24] and PerfFuzz [25]. MDPERFFUZZ and PerfFuzz

are implemented above AFL whereas SlowFuzz is built on top

of libFuzzer [44]. SlowFuzz (libFuzzer) uses in-process fuzzing,

which is much faster as it has no overhead for process start-up;

however, it is also more fragile and more restrictive because it

traps and stops at crashes [44]. Nevertheless, we evaluate all

the tools with the same dataset in Table II and run them for

the same amount of time (6 hours), and the same input size

(200 bytes) for a fair comparison. We failed to run SlowFuzz

on MD4C because of some unexpected crashes after several

minutes of the execution. To the best of our knowledge, there is

no way to suppress such crashes. MDPERFFUZZ and PerfFuzz—

AFL-based fuzzers—do not suffer from this problem.

The results show that MDPERFFUZZ outperformed PerfFuzz

and SlowFuzz by detecting 3 and 5 more performance bugs,

respectively. In particular, PerfFuzz reported 820/114/783 cases

in cmark/MD4C/cmark-gfm, respectively; SlowFuzz reported

432/408 cases in cmark/cmark-gfm, respectively. These results

TABLE III: The performance slowdown and code coverage of
MDPERFFUZZ, PerfFuzz [25], and SlowFuzz [24]. The Best Slow-
down across all tools is normalized over the baseline of the same
random normal-performance case. Line Cov. and Func. Cov. denote
line coverage and function coverage, respectively.

Tool Software Best Slowdown Line Cov. Func. Cov.

M
D

P
E

R
F
F

U
Z

Z

cmark 7.28× 71.90% 67.91%
MD4C 2.31× 76.22% 58.11%
cmark-gfm 6.54× 55.78% 57.35%

P
er

fF
u
zz

cmark 6.82× 56.21% 51.35%
MD4C 2.21× 67.20% 50.20%
cmark-gfm 5.05× 48.26% 44.31%

S
lo

w
F

u
zz cmark 4.32× 40.28% 41.65%

cmark-gfm 3.29× 38.30% 42.33%

also demonstrate the need of a bug de-duplication method. We

applied our bug de-duplication algorithm to identify unique

bugs and then manually confirmed the reports. Finally, PerfFuzz

detected 2/0/2 real performance bugs in cmark/MD4C/cmark-

gfm, respectively. SlowFuzz detected 1/1 real performance

bugs in cmark/cmark-gfm, respectively. This demonstrates that

our syntax-tree based mutation strategy can improve fuzzing

efficiency by generating better inputs within the same resource

budget.

1) Performance Slowdown: Table III shows the performance

slowdown caused by the inputs generated by MDPERFFUZZ,

PerfFuzz, and SlowFuzz. We use the maximum execution

path length as the performance metric, and normalize the

performance slowdown using a baseline obtained from the

random normal-performance cases. We notice that, though all

tools caused performance slowdown on the testing applications,

MDPERFFUZZ achieved a 14.71% higher average best perfor-

mance slowdown over PerfFuzz, and 41.21% over SlowFuzz.

Furthermore, we observe that MDPERFFUZZ could generate

inputs that slow down the compilers much faster than the other

tools. For example, to reach a 4.32× performance slowdown

on cmark, MDPERFFUZZ took 3.2 hours, whereas PerfFuzz

and SlowFuzz used 3.9 hours and 6.0 hours, respectively. This

demonstrates the high efficacy of MDPERFFUZZ in detecting

performance bugs.

2) Code Coverage: We also evaluate the code coverage each

tool achieves to measure the efficacy of our syntax-tree based

mutation strategy. We collect the test cases generated by each

tool and run on afl-cov [45], which detects the code coverage

using the overall execution traces covered by the test cases.

Though SlowFuzz is not based on AFL, we believe using its

test cases on afl-cov can accurately reflect the code coverage

under a fair metric.

We present the results of line coverage and function coverage

in Table III. The syntax-tree based mutation strategy of

MDPERFFUZZ was effective in reaching high code coverage.

It enabled MDPERFFUZZ to visit 67.97% of lines of code

and 61.79% of functions on average. MDPERFFUZZ achieved

higher code coverage than PerfFuzz and SlowFuzz in all
testing software. In the Markdown compilers, MDPERFFUZZ

TABLE IV: Evaluation results on other Markdown compilers and
applications. ∗ denotes the security mode of the compiler.

Software Lang. # Bugs

O
th

er
M

ar
k

d
o
w

n
co

m
p

il
er

s

commonmark.js (0.29.3) JS 7
markdown-it (12.0.4) JS 2
marked (1.2.7) JS 25
Snarkdown (2.0.0) JS 13
commonmark-java (0.17.0) Java 6
flexmark-java (0.62.2) Java 15
commonmark.py (0.9.1) Python 27
php-commonmark (1.5.7) PHP 19
php-commonmark* (1.5.7) PHP 0
Parsedown (1.7.4) PHP 8
Parsedown* (1.7.4) PHP 8
php-markdown (1.2.8) PHP 6
markdown-go Go 13
Comrak (0.9.0) Rust 11
StackEdit JS 9
DILLINGE JS 7

A
p

p
s

GitLab (13.7.3) Ruby 6
BitBucket (7.9.1) Java 8
Hugo (0.74.3) Go 13
Hexo (5.2) JS 14

outperformed PerfFuzz by 20.75% more lines of code and

13.17% more functions; MDPERFFUZZ outperformed Slow-

Fuzz by 28.68% more lines of code and 19.80% more functions.

With the mutation strategy, MDPERFFUZZ successfully fuzzed

8.02% of lines of code and 11.39% of functions that were not

ever visited by other tools. As a result, 2 new performance

bugs were identified within this proportion of code.

Summary. MDPERFFUZZ outperformed the state-of-the-art

works by detecting more performance bugs, achieving better
performance slowdown, and covering more code.

VI. STUDYING PERFORMANCE BUGS IN MORE

MARKDOWN COMPILERS

Many Markdown compilers are implemented in languages

other than C/C++, and they are not supported by MDPERFFUZZ

and other AFL-based fuzzers. To understand if and how

these Markdown compilers suffer from performance bugs, we

construct an extensive dataset and utilize the exploits generated

by MDPERFFUZZ in §V to detect potential bugs in them.

A. Methodology

Dataset. We construct a comprehensive dataset in Table IV,

including a set of other Markdown compilers written not in

C/C++ and another set of relevant real-world applications.

We try to include popular Markdown compilers implemented

in diverse programming languages to understand the effects

of programming languages on performance bugs (if any). In

particular, our dataset covers Markdown compilers written

in Java, JavaScript, PHP, Python, Go, and Rust. We also

include the first two Google search results (StackEdit and

DILLINGE) in January 2021 into our dataset. StackEdit is

also in the suggested application list for opening Markdown

documents in Google Drive. We notice that some compilers

(php-commonmark and Parsedown) provide options to enable

additional security mode to mitigate certain bugs. We are

interested in the effects of such security options, thus we

present them separately with an asterisk suffix (*). Regarding

real-world applications, we try to cover two main uses of

Markdown compilers: (1) Markdown document rendering in

code hosting software (e.g., GitLab, and BitBucket); and (2)

static web page generation frameworks (e.g., Hugo and Hexo).

We downloaded the latest stable version of each Markdown

compiler from its official website or GitHub repository in

January 2021. We denote their actual software versions in the

parenthesis if applicable. We install and configure them with

the default settings.

Experiments. Since MDPERFFUZZ is not capable to detect

performance bugs in the dataset in Table IV, we first collect the

exploits generated from MDPERFFUZZ in §V and summarize

them into 45 unique attack patterns. Each pattern exploits one

Markdown syntax feature. We then apply them to evaluate

the software in a black-box manner. Such an approach is

practical and scalable, and enables us to analyze a diverse set

of compilers.

We use the environment as in §V-A to test standalone

Markdown compilers. For the software in the application
category, we empirically identify the entry points for triggering

the Markdown compiler components (e.g., command-line API

or UI operations). For those that work in the server-client model

and allow self-hosting (i.e., GitLab and BitBucket), we deploy

them on a computer running Debian GNU/Linux 9.12 with

a 4-core Intel Xeon CPU and 16GB RAM. We use another

computer in the same local area network as the client to send

requests and measure the network response time, client-side

CPU time, and server-side CPU time after the client issues a

request. We use such results to detect performance bugs and

further understand whether the performance bugs appear in the

server or the client.

It is hard to instrument the Markdown compilers imple-

mented in diverse programming languages and the Markdown

components in complicated software. Hence we currently are

unable to de-duplicate the reports for the software in the

dataset. Nevertheless, as our test cases especially exploit distinct

Markdown syntax features, we believe they are most likely to

trigger different performance bugs. We will further discuss it

in §VIII.

B. Results

We present the bug detection results in the last column of

Table IV. The performance bugs in Markdown compilers are

prevalent and might have been overlooked by the compiler

developers. In particular, we successfully identified 168 perfor-

mance bugs in the category of other Markdown compilers.

We can observe that the number of detected performance

bugs varies significantly among Markdown compilers. Some

Markdown compilers were particularly vulnerable to perfor-

mance bugs, whereas some did not have any performance

issues. For instance, we detected 27 performance bugs in

commonmark.py but only 2 bugs in markdown-it. We do

not observe a distinguishable difference among programming

languages in terms of the number of bugs. The performance

bugs could substantially impact end-user experiences. For

example, the performance bugs in StackEdit and DILLINGE

could lead to data loss once the browser tab was unresponsive

or was forcibly killed.

The Markdown compilers in popular applications are also

vulnerable to performance bugs. We successfully detected 41

performance bugs—28 on the client-side and 13 on the server-

side. In particular, GitLab and BitBucket suffered from server-

side performance bugs, which could be exploited to significantly

degrade the server performance. They can be exploited for

launching DoS attacks (see §VII for more details).

Responsibly disclosing the bugs can greatly benefit the

software users and the whole community. We are in the process

of contacting the maintainers of the buggy Markdown compilers

and reporting the newly detected performance bugs. At the

time of writing, 24 performance bugs have been acknowledged.

One performance bug in GitLab has been recognized in CVE-

2021-22217 [9].

Though we mainly focused on performance bugs, we also de-

tected memory corruptions in more than 5 Markdown compilers

in our research. In particular, the Markdown compilers exhibited

crashes when we fed them the test cases. The crashes happened

in the Markdown compilers implemented in JavaScript, Java,

and Python. For example, we particularly analyzed one crash

in Snarkdown, and found the maximum call stack size was

exceeded when using recursive function calls to process one

type of our testing inputs. There were other memory errors

(e.g., segmentation faults) when our test cases triggered some

illegal memory read or write.

We also detected several unexpected errors in the application
category. We observed that GitLab and BitBucket could return

HTTP 500 internal server errors when the test cases contained

special Unicode characters, possibly because their Markdown

compilers currently did not support compiling special Unicode

characters. Though such errors usually affect only the user who

sends documents containing such characters, they still lead to

bad user experiences and shall be fixed.

C. Effects of Security Mode

php-commonmark and Parsedown introduce a security

mode to mitigate certain bugs. Our results show that their

security modes have different effects. As shown in Ta-

ble IV, php-commonmark in its security mode (shown as

php-commonmark*) was not vulnerable to any performance

bugs, whereas the security mode of Parsedown (shown as

Parsedown*) did not mitigate any performance bugs.

By reading the relevant documents and the source code,

we find that the security mode of Parsedown mainly miti-

gates cross-site scripting (XSS) vulnerabilities but does not

consider performance related issues. The security mode of php-

commonmark, on the other hand, applies several strategies to

mitigate performance bugs. For instance, it sets a threshold to

limit the depth of nested structures, escapes HTML blocks in

Fig. 4: Compilation time of Markdown compilers under attack inputs
of the size of 50,000 characters and a 10-second maximum threshold.
The middle lines in the boxes represent the corresponding median
values.

Markdown inputs, and disallows unsafe links. These strategies

together could successfully mitigate all 19 performance bugs

identified in its default mode. We will further discuss the

countermeasures against performance bugs in §VIII.

VII. IMPACT ON PERFORMANCE

To better understand the performance degradation caused

by performance bugs, we depict in Figure 4 the compilation

time when the performance bugs are triggered by attack inputs

of 50,000 characters. We use such a size as it can roughly

represent the normal uses of Markdown compilers. The results

show that performance bugs can cause significant performance

degradation. In general, our attack inputs successfully exploited

the performance bugs by causing over 3-second compilation

time. Different performance bugs could result in different levels

of performance degradation in a compiler. For example, the

compilation time of commonmark.js ranged from 2 seconds

up to 10 seconds (the maximum time threshold) due to the

performance bugs. If a threshold was not set, the exploits would

even cause the compilers to run for several hours.

The performance bugs can potentially affect many users if

they reside in server-side applications. Specifically, we present

two case studies about GitLab—a code hosting software, and

Parsedown—a popular Markdown compiler module in PHP.

We deploy the latest version of GitLab with its default NGINX

web server; we develop a server-side PHP application that calls

Parsedown to compile user-provided Markdown documents.

We randomly choose a common attack input that can trigger

performance issues in both GitLab and Parsedown. We then test

the applications with different numbers of concurrent attacks

(requests). We try at most 8 concurrent requests because our

server has only 8 logical CPU cores.

We depict the server CPU usage under the attacks in Figure 5.

We clearly observe the increase of CPU usage when more

concurrent attack requests were issued. In particular, when 8

requests were sent, the server CPU usage promptly reached

Fig. 5: Server-side CPU usage over time under attacks on GitLab
and Parsedown.

almost 100%. Therefore, an attacker can send only a few

attack requests at a very low rate to significantly degrade

the performance of a vulnerable server application, making it

unable to responsively serve other legitimate user requests.

VIII. DISCUSSION AND FUTURE WORK

Mitigating performance bugs. Practical mitigation and

defense techniques against performance bugs are necessary for

protecting vulnerable Markdown compilers and applications.

We have shown that the context-sensitive feature handlers in

Markdown compilers could be abused by attackers in §III-D.

Several security strategies used in the security mode of php-

commonmark (e.g., enforcing the limits, escaping the HTML

blocks, and disallowing unsafe links) are shown to be effective

in mitigating performance bugs. However, they can break some

functionalities, especially those related to the context-sensitive

features. For example, some HTML blocks cannot be compiled

as expected because of the security strategies. Longer legitimate

Markdown documents might also be blocked because of the

limits. A trade-off has to be made to balance functionality and

security. In the future, we hope to port such mechanisms to

mitigate attacks exploiting performance bugs in Markdown

compilers.

Bug de-duplication. Trace-based analysis is effective in

triaging bugs [29]. MDPERFFUZZ thus adopts an execution

trace similarity approach to de-duplicate performance bugs.

Besides the cosine similarity [33, 46] MDPERFFUZZ employs,

other algorithms (e.g., those measuring the Euclidean distance

[46]) can potentially be applied as well. Theoretically, the

method can be applied to software implemented in diverse

programming languages once the run-time CFG edge hit

information is available. However, to the best of our knowledge,

not all programming languages have available instrumentation

tools exactly for such a purpose. It is also time-consuming

and even infeasible to develop our own instrumentation tools

within this work. We thus choose to not apply the method

for the evaluation in §VI. In the future, we plan to further

investigate the feasibility of a language-agnostic method for

de-duplicating performance bugs. For example, we want to

explore transforming the software into certain intermediate

representations (IRs) and obtain the necessary information

from IRs to de-duplicate performance bugs.

Lessons. We have tested Markdown compilers implemented

in languages other than C/C++ in §VI using the attack patterns

generated by MDPERFFUZZ. Each pattern corresponding to

one Markdown syntax feature could exploit a group of bugs in

different Markdown compilers. For example, one attack pattern

was able to trigger similar performance bugs in 12 different

Markdown compilers implemented in multiple programming

languages. Based on our further analysis and the feedback

from the developers, we learned that compiler developers often

borrow implementation ideas from other similar or relevant

projects. Such a design reuse is risky and has resulted in

similar performance bugs across different implementations. We

conjecture that similarly those compilers might commonly be

subject to other types of bugs.

Prior works have studied performance bugs in the compilers

of general-purpose languages (e.g., GCC [17]) and domain-

specific languages (e.g., Node.js regex engine [47, 48]).

However, performance bugs in the compilers of many other

domain-specific languages such as Latex [49] and Wikitext

[50] have not been systematically studied yet. We believe

the design and implementation of MDPERFFUZZ can shed

some light on the following research on other domain-specific

languages. To facilitate future research, we release the source

code of MDPERFFUZZ to help the development of fuzzers

for those languages. For example, researchers can replace

our language model with their own ones in MDPERFFUZZ.

Further, MDPERFFUZZ could also be easily extended to detect

other types of bugs (e.g., memory corruptions) in Markdown

compilers.

IX. RELATED WORK

Understanding performance bugs. Understanding the char-

acteristics of performance bugs can help design techniques

to detect and fix performance bugs. Existing studies focus on

the performance bugs in programs on the desktop platform

[17, 51], mobile platform [18], and the web server end [17],

etc. For instance, Zaman et al. studied performance bugs in

Firefox and Chrome and provided suggestions to fix the bugs

and to validate the patches [51]. Davis et al. and Staicu et al.
analyzed ReDoS problem in npm and pypi ecosystems [47, 48].

For compilers, Sub et al. studied GCC and LLVM compilers

but did not focus on the performance issues [52]. However,

there is little understanding of performance bugs in Markdown

compilers. We further characterize the bug patterns and reveal

the close relationship between the performance bugs and the

context-sensitive Markdown syntaxes.

Detecting performance bugs. The detection of performance

issues has drawn significant attention from researchers over

the past years. Prior studies focus on application-layer DoS

vulnerabilities [12, 53, 54], algorithmic complexity DoS vulner-

abilities [13, 55], and other general performance issues [17, 18].

Static methods analyze the source code of the applications and

diagnose vulnerable bug patterns, for example, repeated loops

[19, 20].

Dynamic methods are also applied to identify performance

bugs. SlowFuzz [24], PerfFuzz [25], and HotFuzz [41] pro-

posed fuzzing solutions to detect the worst-case algorithmic

complexity vulnerabilities. SAFFRON [26] also used grammar-

aware fuzzing to find worst-case complexity vulnerabilities

in Java programs. Toddler [19] detected performance bugs by

identifying loops with similar memory access patterns. Hybrid

approaches [15] combining static analysis and fuzzing were

proposed to detect ReDoS in Java programs. Our work is

tailored for Markdown compilers and is equipped with a bug

de-duplication method.

Grammar-aware Fuzzing. To find security bugs in compilers,

a number of grammar-aware fuzzing frameworks [21, 56–

61] have been proposed. Guided by the grammar, fuzzers

can generate syntactically-correct inputs to test the compilers.

In particular, LangFuzz [62] modified existing test cases by

randomly combining JavaScript code fragments to generate new

test cases. Superion [28] extended AFL to support additional

grammar-aware mutation strategies via pluggable language

parsers. Several learning-based [63, 64] fuzzers transformed

inputs into ASTs and performed subtree replacement with neu-

ral network models. Inspired by these works, MDPERFFUZZ

also employs grammar-aware fuzzing to detect performance

bugs in Markdown compilers.

X. CONCLUSION

Performance bugs in Markdown compilers were previously

understudied. This paper conducted a systematic study to

understand the characteristics of such bugs. We developed

a fuzzing framework, MDPERFFUZZ, to detect performance

bugs in the wild. MDPERFFUZZ significantly outperformed

the state-of-the-art works and successfully identified many new

performance bugs in Markdown compilers and applications.

We demonstrate the performance bugs in Markdown compilers

are not only prevalent but also severe. We hope that our study

could attract more attention to the compilers of domain-specific

languages.

ACKNOWLEDGMENT

The work described in this paper was partially supported by

a grant from the Research Grants Council of the Hong Kong

Special Administrative Region, China (Project No.: CUHK

14210219).

REFERENCES

[1] GitHub, “Github markdown,” 2021, https://docs.github.

com/en/rest/reference/markdown.

[2] GitLab, “Gitlab markdown api,” 2021, https://docs.gitlab.

com/ee/api/markdown.html.

[3] GitHub, “Github docs: About readmes,” 2021,

https://docs.github.com/en/github/creating-cloning-

and-archiving-repositories/creating-a-repository-on-

github/about-readmes.

[4] GitLab, “Gitlab flavored markdown,” 2021, https://docs.

gitlab.com/ee/user/markdown.html.

[5] WordPress, “Support–wordpress.com: Markdown block,”

2021, https://wordpress.com/support/wordpress-editor/

blocks/markdown-block/.

[6] Drupal, “Drupal markdown module,” 2021, https://www.

drupal.org/project/markdown.

[7] Alexa, “Alexa top 1 million sites,” 2021, http://s3.

amazonaws.com/alexa-static/top-1m.csv.zip.

[8] B. Schweblin, “Stackedit,” 2021, https://stackedit.io/.

[9] T. M. Corporation, “Cve-2021-22217,” 2021, https://cve.

mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22217.

[10] ——, “Cve-2020-26409,” 2020, https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2020-26409.

[11] ——, “Cve-2020-14450,” 2020, https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2020-14450.

[12] W. Meng, C. Qian, S. Hao, K. Borgolte, G. Vigna,

C. Kruegel, and W. Lee, “Rampart: Protecting web ap-

plications from cpu-exhaustion denial-of-service attacks,”

in Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, Aug. 2018.

[13] S. A. Crosby and D. S. Wallach, “Denial of service via

algorithmic complexity attacks,” in Proceedings of the
12th USENIX Security Symposium (Security), Washington,

DC, Aug. 2003.

[14] H. M. Demoulin and I. Pedisich, “Detecting application-

layer denial-of-service attacks with finelame,” in Proceed-
ings of the 2019 USENIX Annual Technical Conference
(ATC), Renton, WA, Jul. 2019.

[15] Y. Shen, Y. Jiang, C. Xu, P. Yu, X. Ma, and J. Lu, “Rescue:

Crafting regular expression dos attacks,” in Proceedings
of the 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE), Montpellier,

France, Sep. 2018.

[16] V. Wüstholz, O. Olivo, M. J. Heule, and I. Dillig,

“Static detection of dos vulnerabilities in programs that

use regular expressions,” in Proceedings of the 23rd
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Uppsala,

Sweden, Apr. 2017.

[17] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Un-

derstanding and detecting real-world performance bugs,”

in Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), Beijing, China, Jun. 2012.

[18] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and

detecting performance bugs for smartphone applications,”

in Proceedings of the 36th International Conference on
Software Engineering (ICSE), Hyderabad, India, May–Jun.

2014.

[19] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler:

Detecting performance problems via similar memory-

access patterns,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE), San Fran-

cisco, CA, May 2013.

[20] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “Caramel:

Detecting and fixing performance problems that have non-

intrusive fixes,” in Proceedings of the 37th International
Conference on Software Engineering (ICSE), Florence,

Italy, May 2015.

[21] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-

driven seed generation for fuzzing,” in Proceedings of the
38th IEEE Symposium on Security and Privacy (Oakland),
San Jose, CA, May 2017.

[22] Google, “Oss-fuzz,” 2021, https://google.github.io/oss-

fuzz/.

[23] M. Zalewski, “american fuzzy lop,” 2021, https://github.

com/google/AFL.

[24] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana,

“Slowfuzz: Automated domain-independent detection of

algorithmic complexity vulnerabilities,” in Proceedings
of the 24th ACM Conference on Computer and Commu-
nications Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[25] C. Lemieux, R. Padhye, K. Sen, and D. Song, “Perffuzz:

automatically generating pathological inputs,” in Proceed-
ings of the 27th International Symposium on Software
Testing and Analysis (ISSTA), Amsterdam, Netherlands,

Jul. 2018.

[26] X.-B. D. Le, C. Pasareanu, R. Padhye, D. Lo, W. Visser,

and K. Sen, “Saffron: Adaptive grammar-based fuzzing

for worst-case analysis,” ACM SIGSOFT Software Engi-
neering Notes, 2019.

[27] commonmark.org, “commark-spec,” 2021, https://github.

com/commonmark/commonmark-spec.

[28] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion:

Grammar-aware greybox fuzzing,” in Proceedings of the
41st International Conference on Software Engineering
(ICSE), Montréal, Canada, May 2019.

[29] R. Vasiliev, D. Koznov, G. Chernishev, A. Khvorov,

D. Luciv, and N. Povarov, “Tracesim: a method for

calculating stack trace similarity,” in Proceedings of the
4th ACM SIGSOFT International Workshop on Machine-
Learning Techniques for Software-Quality Evaluation,

2020.

[30] K. Mohror and K. L. Karavanic, “Evaluating similarity-

based trace reduction techniques for scalable performance

analysis,” in Proceedings of the conference on high
performance computing networking, storage and analysis,

2009, pp. 1–12.

[31] Q. Xin, F. Behrang, M. Fazzini, and A. Orso, “Identifying

features of android apps from execution traces,” in

2019 IEEE/ACM 6th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). IEEE,

2019.

[32] R. van Tonder, J. Kotheimer, and C. Le Goues, “Semantic

crash bucketing,” in Proceedings of the 33rd IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), Montpellier, France, Sep. 2018.

[33] P. Dangeti, Statistics for machine learning. Packt

Publishing Ltd, 2017.

[34] C. Killian, K. Nagaraj, S. Pervez, R. Braud, J. W.

Anderson, and R. Jhala, “Finding latent performance

bugs in systems implementations,” in Proceedings of the
18th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), Santa Fe, NM, Nov. 2010.

[35] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A

platform for in-vivo multi-path analysis of software

systems,” in Proceedings of the 16th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Newport

Beach, CA, Mar. 2011.

[36] C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen,

X. Xie, G. Pu, and T. Liu, “Memlock: Memory usage

guided fuzzing,” in Proceedings of the 42nd International
Conference on Software Engineering (ICSE), Seoul, Korea,

Jun.–Jul. 2020.

[37] G. E. Morris, “Lessons from the colorado benefits

management system disaster.” 2004, www.ad-mkt-review.

com/publichtml/air/ai200411.html.

[38] andersk, “Parsing «««. . . takes quadratic time,” 2020,

https://github.com/markdown-it/markdown-it/issues/737.

[39] mity, “Pathological input: Unclosed inline links,” 2017,

https://github.com/commonmark/cmark/issues/218.

[40] nwellnhof, “Quadratic behavior with smart quotes,” 2020,

https://github.com/commonmark/cmark/issues/373.

[41] W. Blair, A. Mambretti, S. Arshad, M. Weissbacher,

W. Robertson, E. Kirda, and M. Egele, “HotFuzz: Discov-

ering algorithmic denial-of-service vulnerabilities through

guided micro-fuzzing,” in Proceedings of the 2020 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2020.

[42] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,

“Evaluating fuzz testing,” in Proceedings of the 25th ACM
Conference on Computer and Communications Security
(CCS), Toronto, Canada, Oct. 2018.

[43] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k)

parser generator,” Software: Practice and Experience,

1995.

[44] LLVM, “libfuzzer,” 2021, https://hammer-vlsi.readthedocs.

io/en/stable/LibFuzzer.html.

[45] mrash, “afl-cov - afl fuzzing code coverage,” 2021, https:

//github.com/mrash/afl-cov.

[46] M. Kryszkiewicz, “The cosine similarity in terms of the

euclidean distance,” in Encyclopedia of Business Analytics
and Optimization. IGI Global, 2014.

[47] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee,

“The impact of regular expression denial of service

(redos) in practice: an empirical study at the ecosystem

scale,” in Proceedings of the 26th ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), Lake

Buena Vista, FL, Nov. 2018.

[48] C.-A. Staicu and M. Pradel, “Freezing the web: A study

of redos vulnerabilities in javascript-based web servers,”

in Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, Aug. 2018.

[49] S. Checkoway, H. Shacham, and E. Rescorla, “Are text-

only data formats safe? or, use this latex class file to pwn

your computer.” in 3rd USENIX Workshop on Large-Scale
Exploits and Emergent Threats, 2010.

[50] B. W. Curry, A. Trotman, and M. Albert, “Extricating

meaning from wikimedia article archives,” in 16th Aus-
tralasian Document Computing Symposium, 2010.

[51] S. Zaman, B. Adams, and A. E. Hassan, “A qualitative

study on performance bugs,” in 2012 9th IEEE working
conference on mining software repositories (MSR), 2012.

[52] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understand-

ing compiler bugs in gcc and llvm,” in Proceedings of
the 25th International Symposium on Software Testing
and Analysis (ISSTA), Saarbrücken, Germany, Jul. 2016.

[53] H. H. Jazi, H. Gonzalez, N. Stakhanova, and A. A.

Ghorbani, “Detecting http-based application layer dos

attacks on web servers in the presence of sampling,”

Computer Networks, 2017.

[54] V. Durcekova, L. Schwartz, and N. Shahmehri, “Sophisti-

cated denial of service attacks aimed at application layer,”

in 2012 ELEKTRO. IEEE, 2012.

[55] R. Smith, C. Estan, and S. Jha, “Backtracking algorithmic

complexity attacks against a nids,” in Proceedings of the
22nd Annual Computer Security Applications Conference
(ACSAC), 2006.

[56] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Syn-

thesizing program input grammars,” in Proceedings of
the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Barcelona,

Spain, Jun. 2017.

[57] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-

based whitebox fuzzing,” in Proceedings of the 2008 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Tucson, Arizona, Jun. 2008.

[58] D. Yang, Y. Zhang, and Q. Liu, “Blendfuzz: A model-

based framework for fuzz testing programs with gram-

matical inputs,” in IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Com-
munications, 2012.

[59] H. Yoo and T. Shon, “Grammar-based adaptive fuzzing:

Evaluation on scada modbus protocol,” in Proceedings of
IEEE International Conference on Smart Grid Communi-
cations (SmartGridComm), 2016.

[60] S. Veggalam, S. Rawat, I. Haller, and H. Bos, “Ifuzzer:

An evolutionary interpreter fuzzer using genetic program-

ming,” in European Symposium on Research in Computer
Security, 2016.

[61] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R.

Sadeghi, and D. Teuchert, “Nautilus: Fishing for deep

bugs with grammars,” in Proceedings of the 2019 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2019.

[62] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code

fragments,” in Proceedings of the 21st USENIX Security
Symposium (Security), Bellevue, WA, Aug. 2012.

[63] S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A

neural network language model-guided javascript engine

fuzzer,” in Proceedings of the 29th USENIX Security
Symposium (Security), Boston, MA, Aug. 2019.

[64] C. Cummins, P. Petoumenos, A. Murray, and H. Leather,

“Compiler fuzzing through deep learning,” in Proceedings
of the 27th International Symposium on Software Testing
and Analysis (ISSTA), Amsterdam, Netherlands, Jul. 2018.

