
Holistic Concolic Execution for Dynamic Web Applications via Symbolic Interpreter
Analysis

Penghui Li
Zhongguancun Laboratory
lipenghui315@gmail.com

Wei Meng
The Chinese University of Hong Kong

wei@cse.cuhk.edu.hk

Mingxue Zhang∗
Zhejiang University

mxzhang97@zju.edu.cn

Chenlin Wang
The Chinese University of Hong Kong

clwang23@cse.cuhk.edu.hk

Changhua Luo
The Chinese University of Hong Kong

chluo@cse.cuhk.edu.hk

Abstract—Symbolic execution for dynamic web applications is
challenging due to their multilingual nature. Prior solutions
often fall short in limited syntax support and excessive engi-
neering costs. We propose a novel approach called symbolic
interpreter analysis (SIA) for web applications written in
interpreted languages. SIA tackles the limitations by leveraging
the comprehensive syntax support of language interpreters and
incorporating established engineering from existing symbolic
execution engines. Since web application logic is handled
by the interpreter, SIA leverages an off-the-shelf symbolic
execution engine to analyze the corresponding interpreter code
to symbolically comprehend the behavior of the web application.
Indeed, SIA entails solving several technical challenges in
web application symbolic execution such as web application
exploration, database interactions, etc.

We have implemented our approach in SYMPHP, a concolic
execution engine for PHP-based web applications. Our extensive
evaluation shows that SYMPHP could effectively explore web
application code with comprehensive PHP syntax support
and high code coverage. It achieved high code coverage and
successfully identified 77.23% of known vulnerabilities in our
dataset, significantly outperforming prior approaches. The
hybrid fuzzing framework built atop SYMPHP significantly
boosted fuzzing and detected ten new vulnerabilities.

1. Introduction

Web applications serve as the foundation of the Inter-
net and have powered many important services, such as
banking, e-commerce, and social networks. Web applications
are typically executed by language interpreters, processing
request data from external users. They thus particularly
suffer from taint-style vulnerabilities [1–3]. Exploitation of
such vulnerabilities can lead to dire consequences, such as
sensitive data leakage, privilege escalation, and even server
compromises [1, 2]. In the real world, 64% of industry

∗Mingxue Zhang is with the State Key Laboratory of Blockchain and Data
Security, and ZJU-Hangzhou Global Scientific and Technological Innovation
Center.

businesses were reported to have experienced web-based
attacks such as malicious code execution [4].

Symbolic execution has emerged as a promising tech-
nique for detecting security vulnerabilities across various
domains [5–9]. It symbolically reasons the behaviors of
programs and consults constraint solvers to check the com-
pliance of program properties. In the past, notable symbolic
execution engines have successfully identified thousands of
critical vulnerabilities in real-world software such as Linux
kernel and Chrome browser [6, 7, 9–12].

However, symbolic execution for web applications
presents unique challenges compared to other types of pro-
grams. One fundamental problem arises from the multilingual
nature of web applications [13, 14]. Web applications often
comprise multiple components implemented in different
programming languages. For example, though PHP-based
web applications are written in the high-level language PHP,
the basic functionalities of PHP are implemented within the
PHP interpreter in the low-level language C [13, 14]. This
multilingual aspect poses a significant obstacle to symbolic
execution, as it needs to comprehensively understand and
reason about all the components in different languages.
Developing a holistic understanding of the interplay between
these components is a non-trivial task.

Existing works bridge the language gap by converting
both languages into a common representation and abstract-
ing/modeling the code behaviors of the languages. The
conventional approach involves initially extracting constraint
formulas from the high-level web application code’s various
representations. These formulas consist of variables, basic
operators, and built-in functions in the high-level language.
Subsequently, these extracted formulas are integrated with the
corresponding syntax abstraction of the operators and built-in
functions implemented in the low-level language, all within
the same representation. For example, Navex [15] employs
Three-Address-Code (TAC) as the formula representation. It
extracts TAC formulas of from the application’s code property
graph and seamlessly integrates them with manually crafted
syntax abstraction of the low-level language.

The existing approach is incomplete and inaccurate, and

demands excessive engineering efforts. First, it often uses a
representation of the high-level web programming language,
e.g., code property graph, for symbolic execution. Given
the syntax complexity of high-level language, the solution
is difficult to implement and often incomplete. Moreover,
the abstraction of the low-level language into the high-level
representation further leads to incomplete and inaccurate
reasoning. The incompletion and inaccuracy could cause both
false positives and false negatives in vulnerability detection
(more details in §2.3). Second, the abstraction process can
be challenging and time-consuming, especially given the
complexity of these components. It demands significant
engineering efforts and thus is unscalable.

We observe that the intrinsic problems do not exist in con-
crete execution when processing concrete inputs. The reason
is that the language interpreter can invoke the corresponding
implementation to operate on concrete inputs without addi-
tional engineering efforts. The language interpreter provides a
complete description of the language of the application. Every
syntax has its corresponding implementation in the interpreter
code. Therefore, a natural thought is to symbolically analyze
the corresponding interpreter code to achieve the symbolic
reasoning of the language syntax. The analysis, if automated,
can also avoid excessive engineering efforts.

In our work, we propose a new approach called symbolic
interpreter analysis (SIA) for symbolic reasoning of web
applications implemented in interpreted languages. Since
every piece of web application code is handled by the
corresponding interpreter code, we symbolically analyze
the interpreter code to indirectly analyze the application. The
interpreter itself is often implemented in low-level compiled
languages like C/C++. We can leverage an off-the-shelf
symbolic execution engine (e.g., S2E [7]) to automate the
symbolic analysis of the interpreter and comprehend the
behavior of the application code. By specifying the web
input as symbolic, the engine can symbolically execute web
application instructions on the symbolic data.

Despite SIA’s advantages, we need to address several
challenges. First, the underlying symbolic execution engine,
originally designed to analyze the interpreter, lacks awareness
of the execution flows of the web application. This can lead
to a shallow exploration as multiple code locations in the
web application may trigger the same code of the interpreter.
To overcome this, we instrument the interpreter to record
the locations of the currently executed web application code
in the application state. Second, to improve the exploration
of web applications, we propose a novel state scheduling
algorithm. A symbolic execution engine maintains a set of
program states for further analysis. This algorithm clusters
the states into groups based on the recorded locations and
ensures different locations can be well explored. Third, web
applications frequently interact with database systems, which
are outside the scope of language interpreters. To accurately
model these interactions, we concretize the symbolic vari-
ables used in database operations via constraint solving. It
allows us to issue concrete queries to the database systems
and retrieve the corresponding concrete results.

SIA is a holistic symbolic execution solution for dy-

namic web applications because it addresses the multilingual
problem. SIA is a generic approach for interpreted web
programming languages. Since PHP is the most popular
server-side programming language with 76.8% of market
share [16], we implement our design of SIA in a sys-
tem called SYMPHP for PHP-based web applications. By
maintaining both the concrete inputs and symbolic states,
SYMPHP results in a concolic execution engine. SYMPHP
follows specific paths directed by the concrete inputs and
mitigates the path explosion issue in conventional symbolic
execution.

We extensively evaluated SYMPHP on a comprehensive
set of web applications. Compared to two state-of-the-art
solutions (XSym [14], and AnimateDead [17]), SYMPHP
could fully support PHP syntaxes without raising errors
during the experiments and unit testing. SYMPHP also
achieved a reasonably high code coverage of 51.57% on
average across the applications. Experiments on a ground-
truth vulnerability dataset further demonstrate that SYMPHP
could detect 77.23% of the vulnerabilities, which significantly
outperformed the two prior solutions. We further integrated
SYMPHP with a web fuzzer Witcher [18], and the resulting
hybrid framework could improve the code coverage of
fuzzing by up to 85.71%. The framework has detected ten
new vulnerabilities in the latest versions of real-world web
applications. To date, two of them have been confirmed.

In this paper, we make the following contributions.
• We proposed SIA, the first solution that tackles the

multilingual challenge and enables complete symbolic
exploration of web applications.

• We developed a holistic concolic execution engine
SYMPHP for PHP-based web applications.

• We demonstrated the benefits of SYMPHP in hybrid
fuzzing and discovered ten new vulnerabilities.

• We plan to open-source SYMPHP at https://github.com/
secureweb/symphp.

2. Background and Motivation

In this section, we first provide the background knowl-
edge of web applications and symbolic execution. We then
show the limitations of existing approaches to motivate our
research.

2.1. Web Applications

Web applications are deployed on web servers and pro-
vide services to client users. Since web applications are viable
on the majority of desktop and mobile platforms where web
browsers are installed, they have become desired targets for
various vulnerability exploitation and attacks [1]. Injection
vulnerabilities are among the most severe types of flaws on
the web where attackers can inject malicious payloads into
web applications. For example, a SQL injection vulnerability
would enable external attackers to steal or destroy critical
application data. A command injection vulnerability would
allow shell command execution in a remote victim server. A

https://github.com/secureweb/symphp
https://github.com/secureweb/symphp

1 <?php
2 if(isset($_GET['name'])) {
3 $user = mysqli_real_escape_string($_GET['name']);
4 $q1 = "SELECT * from users WHERE name = '$user'";
5 $result = mysqli_query($user_conn, $q1);
6

7 if(mysqli_num_rows($result) == 1) {
8 // if returning only one row
9 $row = mysqli_fetch_assoc($result);

10

11 if(strtolower($row["plan"]) == "premium") {
12 // check the language if in a premium plan
13 $q2 = "SELECT * from languages WHERE language = " .

$_GET['lang'];↪→
14 mysqli_query($lang_conn, $q2); // SQL injection
15 }
16 }
17 }

Listing 1: A SQL injection vulnerability.

cross-site scripting (XSS) vulnerability could leak sensitive
user data on the client.

For high flexibility, developers often implement web
applications using dynamic interpreted programming lan-
guages such as PHP, JavaScript, and Python. Among them,
PHP is the most prevalent one, powering 76.8% of websites
today [16]. The most popular content management system
framework WordPress [19] is written in PHP. The execution
of web applications often concerns multiple components
implemented in different programming languages and are
multilingual. Listing 1 presents a PHP code snippet. Each
PHP statement corresponds to certain C code implementa-
tions in the PHP interpreter. Its execution involves both PHP
for application code and C for interpreter code. The example
shows a typical SQL injection vulnerability. At line 14, the
program queries the database system with the query $q2,
which embeds unsanitized external data $_GET[‘lang’].

2.2. Symbolic Execution

Symbolic execution is extensively used for analyzing
programs written in static compiled languages and binary pro-
grams. According to Poeplau and Francillon [11], symbolic
execution is generally constructed from three components: 1)
symbolic expression generation, 2) symbolic backend, and 3)
state scheduling. Symbolic execution treats program inputs
as symbolic. It simulates program execution on the symbolic
inputs and represents the program variables as symbolic
expressions, i.e., functions of symbolic inputs. The symbolic
backend reasons about symbolic expressions using constraint
solvers. Symbolic execution starts with an initial program
state and forks new states in branch instructions. In each
state, it maintains the program counter (PC), which is the
address (location) of the currently executed instruction of
the analyzed program. The state scheduling component aims
to orchestrate the different execution states and prioritize
them according to some strategies [7, 11].

Symbolic execution can be static and directly analyze
program [14]. Static symbolic execution offers the advantage
of not requiring actual program execution. It can also be
combined with concrete execution into concolic execution—
the focus of this work. In concolic execution, an engine

root

0xaa2 0xaa30xaa1

S1

S3

S2 S7S6

S4

S9

S8

PC

S5

S10

Figure 1: A state clustering tree of S2E.

maintains both concrete values and symbolic expressions for
program variables. The analysis typically follows the path
directed by the execution of a concrete input. To explore paths
that deviate from the current concrete path, the engine checks
the feasibility of the branch target opposite to the concrete
direction [20]. If feasible, it generates a corresponding
concrete input to drive further analysis. Concolic execution
can be integrated with fuzzing for hybrid analysis.
S2E. S2E [7] is a widely-used concolic execution engine.
It by default employs a state scheduling algorithm (a.k.a.,
state searcher [21]) based on PC values. S2E groups the
states by their PC values. For example, Figure 1 shows the
state clustering tree with ten states, where states are stored
in the leaf nodes. Multiple states can share the same PC
value because they can execute the same instruction via
different paths. S2E first randomly selects a group. Each
group thus has the same probability to be selected. After that,
it randomly selects a state in the group. As shown in Figure 1,
a state (e.g., S1) in the group of 0xaa1 has the probability of
1
3 ×

1
5 to be chosen for further analysis, whereas a state (e.g.,

S9) in the group of 0xaa3 has 1
3 ×

1
2 . Compared to randomly

selecting a state among all states (each state has the same
probability of 1

10), this avoids the potential bias towards the
groups with more states. Therefore, different locations (PC
values) could be uniformly exercised with equal likelihood.

2.3. Motivation

The multilingual nature of web applications makes
their symbolic execution extremely challenging [13, 14].
A symbolic execution engine for web applications has to
come across the language boundaries to seamlessly and
holistically reason all the components in different languages.
The differences in languages among components are vast.
For example, PHP is a dynamic interpreted language, while
C is a static compiled language. Designing holistic symbolic
reasoning that covers all components/languages is difficult.

However, holistic reasoning is necessary for symbolically
analyzing web application programs. Lack of reasoning
of any component would lead to inaccurate and incorrect
analysis. Failure to understand the interpreter code respon-
sible for handling the application logic makes the entire
symbolic execution unusable. Even incomplete reasoning
of a component would cause dire consequences. According
to our analysis of the source code [22] and descriptions in
the papers [23, 24], the incomplete support of sanitization

functions, e.g., mysqli_real_escape_string() in Listing 1,
has caused incorrect symbolic data propagation and false
positives in vulnerability detection.

Previous approaches solve the multilingual problem
of web applications by converting both languages into a
common representation. They often extract web application
formulas from the high-level language code’s representa-
tions like code property graph [15, 25, 26], control-flow
graph [14, 17, 27], and PHP Opcode [23, 24, 28] and then
link to the syntax abstraction of the low-level language.
However, as mentioned in §1, these approaches present two
intrinsic issues.

1 Language Syntaxes. Web programming languages like
PHP are complex with massive language syntaxes. It is
difficult to implement the symbolic execution completely
and correctly at existing high-level representations. For
instance, PHP defines hundreds of operations and more than
one thousand distinct internal functions [13]. The syntaxes
are often more complex compared to the ones in low-
level languages like C/C++. Moreover, the languages are
dynamic. For example, program variables are used without
type declarations. Their types can be dynamically changed
through the execution, and some are only determinable at
runtime. The dynamic type system makes it hard to infer
variable types in symbolic execution, which, however, are
necessary for constraint solving.

2 Engineering Efforts. Prior symbolic execution demands
a significant amount of engineering work and is unscal-
able [11]. Navex and XSym were implemented with 5K
and 11K lines of code (LoC), respectively. A recent tool
AnimateDead was developed using more than 13 person-
months as described in their paper [17]. For example, to
handle the internal functions, each function ought to be
specially modeled to facilitate the analysis in the symbolic
backend [14, 15, 23, 24]. Apollo [23, 24], Navex [15],
AnimateDead [17], and SYNTHDB [28] all have engineered
function models based on the developers’ understanding of
the function behaviors. The manual approach is unscalable
and erroneous. Moreover, web programming languages have
been evolving with frequent feature updates. Prior approaches
entail additional efforts in each version update.

3. Insight

We propose a new approach of symbolic interpreter
analysis (SIA). SIA transforms the language interpreter that
executes a web application into a symbolic execution engine,
which in turn smartly tackles the multilingual issue. In this
section, we illustrate how SIA is derived.

3.1. Revisiting Concrete Execution

We observe that the two intrinsic problems (§2.3) do
not exist in concrete execution. A web application often
processes concrete external inputs (e.g., GET requests) from
users. The application code is dynamically executed by the
corresponding language runtime, which is usually an inter-
preter (e.g., the PHP interpreter). The language interpreter can

1 int add_function_fast(zval *result, zval *op1, zval *op2) {
2 zend_uchar type_pair = TYPE_PAIR(Z_TYPE_P(op1),

Z_TYPE_P(op2)); // get the types of operands↪→
3

4 if (type_pair == TYPE_PAIR(IS_DOUBLE, IS_DOUBLE)) {
5 ZVAL_DOUBLE(result, Z_DVAL_P(op1) + Z_DVAL_P(op2));
6 return SUCCESS;
7 }
8 else if (type_pair == TYPE_PAIR(IS_DOUBLE, IS_LONG)) {
9 ZVAL_DOUBLE(result, Z_DVAL_P(op1) +

((double)Z_LVAL_P(op2)));↪→
10 return SUCCESS;
11 }
12 ...
13 }

Listing 2: Implementation of add operation in PHP.

directly handle the language syntaxes and application code
with its corresponding interpreter code. Listing 2 shows the
implementation of the add operation in the PHP interpreter.
It can be regarded as the precise and official definition of
the operation. Different language syntaxes are all similarly
supported in the corresponding interpreter code.

3.2. Symbolic Execution of Interpreter Code

By revising the concrete execution, we observe that
symbolic execution of the interpreter code can simultaneously
tackle both the intrinsic problems mentioned in §2.3. The
language interpreter provides a complete description of the
language of the application. Every syntax has its corre-
sponding implementation in the interpreter code. Therefore,
by symbolically analyzing the corresponding interpreter
code, a solution can achieve the symbolic reasoning of
language syntaxes, thus resolving limitation 1 . For example,
a symbolic execution engine can symbolically analyze the
interpreter code shown in Listing 2 to fully comprehend its
behavior. It would carefully track the symbolic states over the
function arguments (op1 and op2) and manage the memory
object of result. Since interpreters are often implemented in
static compiled languages, e.g., C/C++, we thus can directly
leverage existing mature execution engines [7, 10, 11] to
analyze the interpreter code. By automating the process
on different syntaxes, the solution can alleviate excessive
engineering efforts, addressing limitation 2 .

One might leverage the symbolic analysis of the in-
terpreter code as a means of syntax reasoning and then
integrate it with symbolic analysis on code representations,
i.e., integrating two separate symbolic execution components.
However, this is difficult because the symbolic execution
of the interpreter code and the symbolic execution of the
web code representations run in two completely different
settings. For example, KLEE for the interpreter code is atop
LLVM intermediate representation (IR), whereas Navex for
the application code is atop the PHP code property graph.
Bridging the gap between two analyses is at least as difficult
as bridging the language gap between application code and
interpreter code.

WEB APP DATABASELANGUAGE INTERPRETER$_GET[‘name’]:
{‘root’, symbolic_value}

SYMBOLIC EXECUTION ENGINE (S2E)

Symbolic Web
Input Specification

WebPC
Exposure

Symbolic Query
ConcretizationWebPC-Oriented

State Scheduling

Figure 2: Concolic execution of a web application through SIA. The dotted box denotes the concrete/symbolic input of the analysis.

3.3. SIA: Symbolic Interpreter Analysis

We propose a new approach of symbolic interpreter
analysis (SIA) for web application symbolic execution. The
key idea is to simulate the execution process of a web
application and symbolically analyze the corresponding
interpreter code. A web application comprises a sequence of
application code instructions. The functionality of each code
instruction is correspondingly achieved in the interpreter code.
Since they are functionality-wise equivalent, symbolically
analyzing the corresponding sequence of the interpreter code
can realize the symbolic execution of the web application. In
our approach, SIA directly applies the target web application
to the interpreter so that SIA can perceive the interpreter
code sequence. SIA then leverages an off-the-shelf symbolic
execution engine to symbolically execute the interpreter code,
thus avoiding excessive engineering efforts.

SIA addresses the multilingual problem and is holistic.
To the best of our knowledge, SIA is the first solution that
enables complete symbolic reasoning of web applications.
The workflow of SIA is depicted in Figure 2. Initially, web
inputs such as request data are stored in the memory of
the language interpreter before the interpreter executes the
web application code. SIA leverages the underlying symbolic
execution engine to specify the web inputs as symbolic in
the memory of the interpreter. In every web application
instruction, the underlying engine symbolically analyzes
the corresponding interpreter code, which performs the
necessary computation for the application code. It tracks the
computation and propagation of symbolic data by its inherent
symbolic analysis capability of interpreter code. Following
the execution of the web application, this ultimately achieves
the symbolic execution of the target web application.

We design SIA into a concolic execution method driven
by concrete inputs. SIA maintains symbolic states for
concrete web inputs and specifies them as symbolic on
demand. Concolic execution can potentially mitigate the path
explosion problem by effectively exploring a selective set of
interesting program paths. It shows great promise and can
assist other program analysis methods. For example, it can
validate static analysis results by generating proof-of-concept
inputs. It can also solve hard-to-solve path constraints to
help fuzzers explore difficult paths.

3.3.1. SIA in an Example. Due to the complexity of
language implementations, we illustrate our solution in
a simple case of $x = $sym + 1. We assume $sym is a
symbolic variable manipulable by external users, and it has an
initial concrete value 0 in our concolic execution. Before the

1 void zend_assign_to_variable_reference(zval *variable_ptr, zval
*value_ptr) {↪→

2 zend_reference *ref;
3 ...
4 ref = Z_REF_P(value_ptr);
5 GC_ADDREF(ref);
6 ...
7 ZVAL_REF(variable_ptr, ref);
8 }

Listing 3: Implementation of assign operation in PHP.

analysis, we first specify web inputs as the initial symbolic
data. In the implementation of Listing 2, the PHP interpreter
performs the value addition based on the operand types. For
example, line 9 converts op2 to double type and adds it with
op1. The result is saved to result in the function. At the
PHP code level, an intermediate result of $sym + 1 can be
computed according to the type of $sym. Since $sym is a
symbolic variable, the intermediate result is also regarded as
symbolic. The type judgment in the implementation resolves
the dynamic type systems of the application because the
underlying engine can symbolically reason the types of
operands.

Symbolic data propagates mainly at assignment oper-
ations. Listing 3 shows the simplified implementation of
assign operation from right-hand-side (RHS) value to left-
hand-side (LHS) variable. It first obtains the pointer reference
to RHS value (value_ptr) at line 4. The reference is then
assigned to the LHS variable (variable_ptr) at line 7. As
a result, the LHS variable points to the same memory
region of the RHS value. In the assignment operation of
$x = $sym + 1, it has the RHS value of $sym + 1 and the
LHS variable of $x. The RHS value has been previously
computed into the intermediate result. Therefore, symboli-
cally executing the assignment operation makes $x point to
the symbolic memory region of the intermediate result. $x
then becomes symbolic.

When a symbolic variable is used in branch instructions,
the underlying engine will consult constraint solvers to check
the feasibility of branch targets.

3.3.2. Challenges and Solutions. Despite SIA’s advantages,
there remain three technical challenges.
Unawareness of Execution Flows of Web Applications.
Multiple code locations in a web application can trigger
the same portion of code of the interpreter, e.g., the same
operation. Though the language interpreter executes a web
application, the underlying symbolic execution engine is
only aware of the interpreter code but not the application
code. By monitoring the interpreter alone, it cannot perceive

the execution state of the web application. Specifically, the
underlying symbolic execution engine maintains only the
states of the interpreter. The maintained states would have
the same PC value of the interpreter even though they
execute different code locations of the web application—PC
value collision. For example, the two equality comparison
operations at line 7 and line 11 in Listing 1 correspond to the
same code implementations in the PHP interpreter because
they are comparing values in the same types. The underlying
engine cannot distinguish between the two lines.

Solution: We solve this challenge by instrumenting the
language interpreter. In particular, we define WebPC—the
locations (e.g., line number and operation types) of the
executed web application code. We maintain the WebPC
in the interpreter and expose it to the underlying symbolic
execution engine. This is also shown as WebPC exposure in
Figure 2. Therefore, the underlying engine can monitor the
execution states of the web application.
Inefficient State Scheduling. The original state scheduling
strategy of the underlying engine is designed for analyzing
the interpreter. It would aim to expand the code coverage of
the language interpreter regardless of the execution progress
of the web application. It cannot extensively explore the web
application. In particular, the PC value collision problem
makes the state scheduling strategy incapable of properly
arranging the states for advancing the analysis of the web
application.

Solution: We incorporate the application state into the
interpreter state for application state exploration. We first
include WebPC in the maintained states and employ a WebPC-
oriented state scheduling algorithm to solve this challenge.
In particular, our new state scheduling algorithm refines the
clustering of states (§2.2) into a hierarchical clustering tree,
where WebPC is used to group the states. It then randomly
selects a group so that groups with different WebPC values
can be uniformly explored.
Database Interactions. Web applications commonly interact
with external environments, especially databases for the
application data. The data retrieved from databases can affect
the execution flows [28]. The databases are managed by
orthogonal database management systems (e.g., MySQL [29])
that are not included in part of the language interpreters. The
interpreters only provide extensions in the means of internal
functions of the languages, e.g., mysqli_query(), to interact
with them. Symbolic interpreter analysis cannot symbolically
reason their behaviors by analyzing the application code
and interpreter code. Most prior symbolic execution tools
over-approximate the retrieved data as arbitrary symbolic
data [14, 15] or directly discard database operations [23, 24].
This would overlook the necessary data constraints such as
data types specified in the database schema, and lead to
non-negligible false results.

Solution: SIA follows the common practice in concolic
execution to interact with database systems, especially when
symbolic data is involved in database operations. In particular,
SIA includes a module of symbolic query concretization,
which invokes constraint solvers to generate concrete values

for the symbolic data used in the queries. These resulting
concrete queries are then passed to actual database operations
and valid concrete results are retrieved.

4. SYMPHP

In this section, we describe how we prototype SIA in a
system named SYMPHP for PHP-based web applications.
SIA can be similarly implemented to other interpreted
languages such as JavaScript and Python.

4.1. Underlying Symbolic Execution Engine

SIA employs an off-the-shelf symbolic execution engine
to analyze the language interpreter. Since the PHP interpreter
is purely implemented in C, engines capable of C language
can meet our requirements. After our preliminary experi-
ments, we decide to adopt S2E [7] for our implementation of
SYMPHP. We have tried other options including KLEE [10],
QSYM [30], SymCC [11], and SymSan [20]. However, our
attempts were unsuccessful. We present our experience in
§A. We believe once these engines are robust enough to
analyze the PHP interpreter, they can be used to facilitate
our realization of SIA.

4.2. Handling Symbolic Data

4.2.1. Symbolic Web Input Specification. An initial step of
concolic execution is to specify symbolic data. Super global
variables are often regarded as the source of external inputs
in symbolic execution [2, 14]. PHP interpreter maintains
all variables and values of the web application code in its
memory, including super global variables. SYMPHP thus
specifies the memory regions of super global variables as
symbolic in the interpreter. SYMPHP directly invokes the
s2e_make_symbolic() API function for the specification after
the request data is copied to the super global variables,
thereby enabling the concolic execution driven by the con-
crete request data [21]. It is worth noting that our solution is
based on the PHP interpreter. It can be applied to the target
web applications without modifications to the applications.

Some symbolic execution engines might define their
own custom API functions for flexibly specifying symbolic
data, e.g., make_symbolic(). We take a different option
for two reasons. First, using such API functions requires
modifications of the target web applications, e.g., calling the
corresponding API function in the application code. This is
often undesired especially when super global variables are
extensively used across the application modules, and some
are inlined. Second, directly marking the corresponding super
global variables as symbolic when they are initialized in the
interpreter can ensure the completeness of the specification.

4.2.2. Tracking Symbolic Data. SYMPHP relies on the
underlying symbolic execution engine to track the symbolic
data. We have illustrated this process in §3.3.1. Specifically,
S2E can track the usage of the specified symbolic memory

regions in different PHP operations by symbolically ana-
lyzing the corresponding interpreter code. It automatically
propagates the symbolic data in value assignment statements.
Such a design naturally avoids significant engineering efforts.

4.2.3. Concretizing Queries for Database Operations.
Web applications frequently interact with database systems.
Symbolic data can propagate to the database operations, con-
stituting database queries. For example, the $_GET[‘name’]
is used as a part of the query $q1 at line 4 of Listing 1. The
query becomes symbolic if the external input $_GET[‘name’]
is set symbolic. To solve this issue, one can extend the scope
of symbolic execution to the database management system.
However, this is computationally expensive as the engine
has to analyze much more code. Existing approaches often
approximate database operations and treat the retrieved data
(e.g., line 5) as arbitrary data [15, 23]. This is imprecise and
can introduce false positives.

We propose concertizing the queries for database opera-
tions when symbolic data is involved as part of the queries.
Specifically, we first solve path constraints to obtain concrete
values for symbolic data, which compose in part concrete
queries. The concrete queries are then directly passed to the
actual database operations to retrieve concrete database data.
This is precise as always valid data is retrieved. For example,
the symbolic data in queries ($q1 and $q2) are concretized
when they are passed to mysqli_query() function to query
database systems. The PHP interpreter uses several internal
functions as the binding layer to interact with database
systems. We thus extend the related internal functions in the
PHP interpreter to achieve symbolic query concretization.

4.3. Exploration Strategy

SYMPHP symbolically analyzes web applications on
the symbolic inputs. In this part, we first describe how we
expose the execution information of the web application to
S2E (§4.3.1). We then present the design of our new state
scheduling algorithm (§4.3.2).

4.3.1. WebPC Exposure. The maintained states of S2E
include PC values of the target program—PHP interpreter in
our case. We propose incorporating the application state into
the interpreter state for effective application state exploration.
We define WebPC as the location of the web application
code being executed presently. We include WebPC values in
the states maintained by S2E.

PHP programs are executed in the form of a sequence
of byte-code instructions because the PHP interpreter first
transforms PHP source code files into byte code. The byte
code is dynamically generated on the fly when a PHP
script is requested. It is thus non-trivial to directly locate
a dynamically generated byte-code instruction. Therefore,
we correlate the line numbers of the PHP programs with
the byte-code instructions and alternatively record the line
number in WebPC for each instruction.

One single line of PHP code can generate multiple byte-
code instructions, each corresponding to one basic operation.

0x7

0x1

0xaa2 0xaa30xaa1 0xaa1

S1

S3

S2

S7

S6

S4

S9

0x2

S5 S8

0xb

0xaa2

0x2

S10

root

WebPC

PC

LineNo

Type

Figure 3: A state clustering tree based on WebPC.

Multiple byte-code instructions thus can share the same
line number. For example, the internal function call of
strtolower() and equality comparison at line 11 of Listing 1
correspond to two distinct byte-code instructions; however,
they have the same line number of 11 in the PHP program.
This leads to a collision problem. To mitigate this issue,
we additionally include the type of byte-code instruction
in WebPC. The type specifies the class of instructions.
Therefore, most byte-code instructions can be uniquely
located, resulting in more accurate WebPC in our design.

WebPC(ins) = LineNoweb(ins) << 8 | Type(ins) (1)
We formalize WebPC in Formula 1 as a function of the

currently executed byte-code instruction (WebPC(ins)). It
is a 32-bit integer and constitutes two parts: 1) LineNo(ins),
the corresponding line number in PHP code described in the
first 24 bits, and 2) Type(ins), its instruction type described
in the last 8 bits. It is not necessary to include the file names
of PHP scripts in WebPC because we take a similar approach
like Witcher [18] to separately test each PHP script (more
details in §5.4). However, adding the file name can be easily
achieved, for example, by concatenating the hash value of
the file name to the current form of WebPC. We leave this
extension to interested readers.

We instrument the PHP interpreter to expose WebPC of
currently executed PHP byte-code instructions to S2E. The
Zend virtual machine of the PHP interpreter provides a trace
module. We enhance it to capture the required information of
WebPC. We then use the s2e_invoke_plugin() API function
to notify S2E of the WebPC value so that S2E can include
it in the maintained states. As a result, each state in S2E
contains both WebPC and PC.

4.3.2. WebPC-Oriented State Scheduling. We develop a
new state scheduling algorithm to select states based on the
exposed WebPC. It aims to expand the coverage of the web
application code. Similar to the state clustering tree of S2E
(§2.2), our algorithm first constructs a state clustering tree
based on the values of WebPC and PC. Specifically, it first
categorizes the states by their WebPC values (LineNo and
Type, respectively). States with the same values are grouped
together. Within each group, it further clusters the states by
their PC values. This results in a hierarchical state clustering

Algorithm 1: State scheduling algorithm.
input : states
output : nextState

1 root ← treeConstructor(states)
2 nextState ← selectOne(root)
3 return nextState
4
5 function selectOne(root):
6 // randomly select one child of root
7 numChildern ← size(root.children)
8 if numChildern > 0 then
9 randomIndex ← randomInteger(0,

numChildern) // get a random integer
10 randomChild ← root.children[randomIndex]
11 return selectOne(randomChild)
12 else
13 return root
14 end
15 end

tree, where the states are stored in the leaf nodes. Take the
ten states in Figure 1 as an example, Figure 3 shows the
state clustering tree under the new clustering method. Based
on the maintained WebPC values, the states are accordingly
adjusted in the leaf nodes.

Our state scheduling algorithm is performed at the top
of the state clustering tree. The key insight is to properly
select states so that groups with distinct WebPC values
get uniformly explored. Meanwhile, the PC values also
supplement the state selection. As shown in Algorithm 1,
the treeConstructor() function at line 1 constructs the
state clustering tree and returns its root node. The algorithm
then selects a state for further analysis by the selectOne()
function (line 2). Specifically, the function randomly selects a
child of the root node if it has at least one child (line 10). This
is done by generating a random integer (randomIndex) as the
index to select the child. Such a strategy ensures that all chil-
dren of a root node have the same probability to be selected.
The process iterates on the selected child until it reaches
the leaf node, where the corresponding state is returned
(line 11 and line 13). Since WebPC values incorporate the
location of the web application code, our algorithm ensures
that specific code locations are not excessively executed,
effectively mitigating path explosion in loops and recursions.

We illustrate our algorithm with the example in Figure 3.
Initially, the root node has two children: LineNo:0x7 and
LineNo:0xb. They are given the same chance (i.e., 1

2) since
they refer to distinct locations in the PHP application.
Suppose LineNo:0x7 is selected, its two children Type:0x1
and Type:0x2 have the same selection probability, i.e., 1

2 ×
1
2 .

Ultimately, the selection probabilities of S1 and S9 are
1
2 × 1

2 × 1
3 × 1

4 and 1
2 × 1

2 × 1
3 × 1

2 , respectively. They
are lower than those in the original S2E algorithm because
the two states both execute the same locations (line 7) in
the PHP program. On the other hand, S8 has a selection
probability of 1

2 because it is the only state that executes
line 11 (0xb). As shown, states with different locations in
the PHP program can be well distinguished and prioritized.

TABLE 1: Breakdowns of implementation details.

Component Modification (LoC)

S2E [7] 1,500 (C++)

PHP Interpreter 300 (C)

Coordinator 300 (Bash and Python)

4.4. Implementation

We handle the web request using the Common Gateway
Interface (CGI) of PHP. Normally, a web server is configured
with a PHP module. It receives from clients HTTP requests
for PHP scripts and delivers the task to the PHP module.
The module executes the PHP code to dynamically generate
the HTML or other content. Such a workflow glues the web
server and the PHP interpreter, making it hard to symbolically
analyze only the PHP interpreter through SIA. Fortunately,
PHP CGI allows directly invoking the web application
through environment variables and standard inputs from
the command line. We thus translate HTTP requests into
CGI requests and then separately leverage the CGI mode of
PHP interpreter to handle the requests. Witcher also takes a
similar strategy [18].

For vulnerability detection, we emphasize that the key
contribution of this work is to support symbolic exploration
of web applications via SIA, rather than techniques to detect
specific types of vulnerabilities. We thus leverage the fault
escalation technique proposed in Witcher to identify SQL
injection and command injection vulnerabilities. Besides, we
also equip SYMPHP with a basic detector for reflected server-
side XSS vulnerabilities [31].1 The detector injects a specially
crafted payload and checks if the payload appears in the
response. We leave supporting other types of vulnerabilities
as the future work.

We implement SYMPHP for PHP 7 and PHP 8. The
two versions together account for 80.9% of PHP usage on
the web [16]. We summarize our efforts for prototyping
SYMPHP in Table 1. Our implementation takes only 2.1K
LoC in total, with 1.5K LoC for the core S2E component.
The modifications are much smaller than prior solutions
including XSym [14] and Navex [15]. We develop our state
scheduling algorithm as a plugin of S2E. Our modifications
are not tailored to PHP and can be ported to other interpreters.
Our experience shows that prototyping SIA to a different
version of PHP would take only several hundred LoC using
weeks of effort.

5. Evaluation

In this section, we first describe our experimental setup
(§5.1). We evaluate the comprehensiveness of PHP syntax
support (§5.2) and web application code exploration (§5.3).
We then evaluate the vulnerability detection capability (§5.4)

1. Without further clarification, the term XSS in this context specifically
refers to reflected server-side XSS.

and investigate the internals of SYMPHP (§5.5). We also
validate the benefits of SYMPHP in hybrid fuzzing (§5.6).

5.1. Experimental Setup

Dataset. We aim to construct a comprehensive and unbiased
dataset for the evaluation. Our selection criteria are to
include the popular and complex web applications that
have been well evaluated by recent PHP program analysis
works [2, 18, 28, 32]. As a result, we include 17 web
applications in our evaluation, shown in Table 2. Some web
applications are excluded from our dataset, even though they
are evaluated in the above-mentioned tools. There are two
reasons. First, some web applications (e.g., SchoolMate) can
only run on PHP 5, which has become obsolete since 2004
and therefore is not supported in our current implementa-
tion of SYMPHP. Second, due to unresolved dependency
issues, we failed to install some web applications in our
environments. For instance, one of the authors spent over
20 hours trying to install Codiad [33], but still did not
succeed. It is worth noting that we use old versions of
the applications as in prior works [15, 28, 32] because the
previously known vulnerabilities in them allow us to better
evaluate the vulnerability detection capability. Nevertheless,
SYMPHP can be applied to the latest versions to detect
previously unknown vulnerabilities, and we demonstrate that
in §5.6.

The rest of the web applications included in our dataset
are popular ones. For example, web applications such as
MediaWiki [34], WordPress [35], PHPBB [36], Drupal [37],
and OpenEMR [38] have millions of deployments on the
Internet. The applications are complex. In total, the web
applications contain around 51K files and 9M LoC. The only
exception is Witcher-test, which is a benchmark constructed
by the authors of Witcher [18] with only 246 LoC. It aims to
test a tool’s capability of generating specially crafted testing
inputs. It well suits the assessment of concolic execution
engines like SYMPHP. Therefore, we also add it to our
dataset.

We manually installed the web applications and initialized
the databases in the default settings using a considerable
amount of time. For most web applications, we created a
user account and set up its credentials. We can use them
to achieve automated authentication in further testing. The
containers for the experiments are running Ubuntu 22.04
with a shared memory of 1GB. They are set up on a server
with a 36-core Intel Xeon CPU and 96GB RAM.
Comparison Targets. We include the state-of-the-art PHP
symbolic execution engine, XSym [14], in the evaluation
as a comparison target. Other symbolic execution engines
are excluded from the comparison because their code is
not publicly available [23, 24, 28]. Although Navex is open-
sourced, its code was said to be incomplete [22, 39, 40]. One
author spent more than one week setting up Navex but still
failed to fix it. We thus exclude the quantitative comparison
with Navex in this part. It is worth noting that XSym is a
static symbolic execution engine rather than a concolic one.

It directly analyzes the application’s code representations to
check vulnerabilities. We acknowledge that the comparison
is not perfectly fair. However, it could still allow us to
systematically compare concolic execution and conventional
symbolic execution.

AnimateDead [41] is a concolic execution engine for web
application debloating. It removes code not exercised/covered
during concolic execution. We would like to also include it
in the comparison. However, we did not completely succeed
in the tool setup. We instead directly reuse the data presented
in the paper [17] for a general comparison.
Experiment Procedures. As a concolic execution,
SYMPHP requires concrete inputs to drive its exploration.
Similar to SymCC [11] and SymSan [20], we employ a
fuzzer to generate such concrete inputs. There are a few web
application fuzzers that can facilitate our needs, including
Black Widow [42], Witcher [18], and WebFuzz [43]. We
choose Witcher in our current experiments because it is
considered the state-of-the-art grey-box fuzzer for web
applications as shown in its evaluation results.

During fuzzing, we provide Witcher with the entry URL
of the application, login URL, and user credentials. Witcher
operates in two steps by design: initially identifying the entry
URLs and subsequently conducting fuzzing on each URL.
Following the instructions of Witcher, we limit Witcher’s
crawler to run for four hours per application. In the second
step, Witcher separately tests each URL for a time budget. In
our testing, we set the time budget to ten minutes. As a result,
the total testing time would vary across web applications
depending on the number of URLs identified by the crawler.
Normally, the number of URLs is positively related to the
complexity of web applications [18].

In the second step, we collect the corresponding concrete
inputs on the server side. We provide the collected concrete
inputs to SYMPHP to perform concolic execution. Each
concrete input includes the URL, request method (e.g.,
POST or GET), request data, and query string. SymCC
and SymSan configure a time budget for the analysis of a
concrete input. We set a time budget of ten minutes for each
URL and uniformly distribute the budget to the concrete
inputs associated with the URL. This is because modern
web applications have thousands of URLs, and each URL
is further associated with a number of concrete inputs. The
total number of concrete inputs would be substantially huge.
Setting a time budget per URL is a necessary adjustment
to ensure the experiments can finish within a reasonable
amount of time. In our experiments, we apply the same time
budget used by SYMPHP per application to XSym.

5.2. Syntax Support

During the experiments, we check if SYMPHP can fully
support PHP syntaxes as we expect. We thus monitor the
analysis of SYMPHP and check the logs for any syntax error.
The results show no such syntax errors occurred during the
entire experiments. XSym rather reported multiple (more than
20) issues with incomprehensive syntax support regarding
arrays, dynamic function calls, etc. Though being a static and

TABLE 2: Evaluation results on vulnerable web applications. SYMPHPns is a variant of SYMPHP with the WebPC-oriented state
scheduling disabled. TO means the tool reaches the time limit before completing the analysis. ERR means the analysis could not finish
because of unexpected errors. ∗ denotes a previously unknown vulnerability that remains in the latest version. † denotes the average value
across applications.

Application Code Coverage (%) Vulnerability Detection (#)

ID Name # Files # LoC Witcher SYMPHP SYMPHPns Known Witcher XSym SYMPHP SYMPHPns

1 MediaWiki 1.2.7 3,264 184,683 25.19 34.22 28.84 7 2 4 6 2

2 WordPress 4.7 591 26,801 25.34 43.97 27.52 10 3 TO 10 4

3 WordPress 5.1 706 336,985 15.91 32.98 29.01 5 2 TO 4 3

4 OSCommerce 2 533 54,561 33.28 51.10 42.19 6 2 3 6 2

5 PHPBB 3.1.10 1,401 330,269 21.4 43.98 26.78 3 0 TO 3 1

6 Witcher-Test 8 246 100 100 100 7 7 7 7 7

7 Drupal 8.0 8,111 152,656 19.54 40.82 22.48 5 1 5 4 2

8 Drupal 9.0 11,078 252,249 23.72 49.09 26.92 4 0 1 1 1

9 OpenEMR 5.0.2 9,004 225,221 42.12 53.90 44.92 13 3 TO 10 3

10 OpenEMR 6.0.2 8,565 6,794,691 21.87 35.24 27.67 5 3 TO 4 3

11 Opencart 2.3.0.2 2,179 291,403 42.51 67.43 50.53 3 2 TO 3 2

12 Opencart 3.0.3.8 2,601 93,220 50.48 59.12 53.38 2 1 0 2 1

13 Webid 1.2.2 322 55,738 13.23 27.98 15.93 4 0 2 2 0

14 Silverstripe 3.5.3 777 200,808 21.47 39.23 27.28 5 3 ERR 3 3

15 WebChess 7 29 5,017 49.05 89.90 61.26 4 3 2+1∗ 4+1∗ 3

16 HSM 19 817 9,181 58.32 75.18 66.17 4 1 2 2 1

17 phpMyAdmin 4.7 1920 130,389 22.49 43.09 33.91 14 4 8 7 6

Total - 51,906 9,144,118 35.21† 51.57† 40.07† 101 37 34+1∗ 78+1∗ 44

dynamic symbolic execution, respectively, the experiments
can still demonstrate the significant benefits of SIA. Although
Azad et al. claimed that AnimateDead [17] could also support
all syntaxes of PHP 7, it heavily relies on their dedicated
engineering. Adding support for new features in PHP 8 will
still take a considerable amount of time.

We further assess the syntax support using unit testing.
We apply SYMPHP and XSym to the PHP test suite equipped
in the official PHP interpreter repository [44]. Each test
case in the suite contains a simple PHP program exercising
specific PHP syntax. We first randomly set a variable in
the PHP program symbolic and use SYMPHP to find a
satisfying concrete value.2 We then check if the tools 1) do
not raise syntax errors and 2) do produce expected results.
For the latter, we apply the concrete value again to the test
suite to verify its correctness. Regarding the results, out of
152 test cases, SYMPHP passed all of them, while XSym
succeeded for 86. This further confirms the comprehensive
syntax support of SYMPHP.

5.3. Code Coverage

To understand how comprehensive SYMPHP can sym-
bolically explore target web applications, we measure the
code coverage SYMPHP can achieve. We replay the concrete
inputs generated by SYMPHP during symbolic analysis and
use Xdebug [45] to measure the total exercised code lines.

2. We excluded simple tests that do not use any variables.

However, we cannot measure the coverage achieved by
XSym because XSym only generates concrete inputs for
those suspicious locations it labels. Replaying these inputs
does not reflect its actual code coverage.

SYMPHP is highly effective in exploring web application
code. We show in Table 2 the proportion of exercised code
of both Witcher and SYMPHP. For this, we used PHP-
Parser [27] to parse the application’s source code to compute
full code coverage at code line level. The results suggest that
SYMPHP could significantly improve code coverage atop
the concrete inputs of Witcher. Specifically, SYMPHP and
Witcher achieved an average code coverage of 51.57% and
35.21%, respectively. This means that after thorough fuzzing,
SYMPHP could still improve the code coverage by 46.46%.

Besides syntax support and engineering effort advantages,
the code coverage of SYMPHP is comparably better than
other dynamic concolic execution works [17, 28]. However,
among the applications, WordPress and Webid have relatively
lower coverage. We manually inspected them and identified
two possible reasons. First, we used the default installation
configuration to run the experiments. Some code modules
are not reachable in our configurations [46]. For instance,
we chose English as the language setting for all applications.
Code related to other languages could not be covered in
this setting. To cover such code, special configurations
are required. Second, some code is only reachable after
multi-step navigation due to the dependencies among web
pages. Our current concolic execution tests a URL at a time
and cannot simulate the page navigation. Other advanced

techniques such as the navigation models [15, 42] can help
mitigate this issue.
Comparison with AnimateDead. Two out of the four
applications evaluated by Azad et al. are also included in
our dataset [17]. The proportion of remaining code in their
paper after debloating denotes the ultimate code coverage.
AnimateDead covered 54% and 31% of code for WordPress
and phpMyAdmin, respectively. We find that AnimateDead
selectively employs forced execution for complex path
conditions—when it explores both branches of a conditional
statement. The authors discussed that this would overestimate
the code coverage by 4% to 15%. SYMPHP achieved similar
results on the two applications compared to AnimateDead,
which was developed using over 13 person-months.

5.4. Vulnerability Detection

Besides code coverage, we assess the capability of
SYMPHP in detecting vulnerabilities. In the application
dataset, we include known vulnerabilities (i.e., command
injection, SQL injection, and reflected server-side XSS)
to facilitate false negative assessment. We investigated the
CVE website and/or the applications’ official vulnerability
report channels, e.g., GitHub issues. Specifically, we searched
keywords specifying the vulnerability type and application
version and manually identified the vulnerabilities.3 Within
the 17 web applications, we identify 101 in-scope known
vulnerabilities. We acknowledge that our manual vulnerability
collection may not be exhaustive. However, the search is
done in a best-effort manner. An alternative method to
constructing an unbiased vulnerability dataset is to find all the
vulnerabilities in the popular web frameworks from the CVE
database in recent years. However, we abandon it because
the vulnerabilities can concern a large number of application
versions, resulting in unaffordable installation efforts.

SYMPHP is highly effective in detecting known injection
vulnerabilities in our dataset. As shown in Table 2, SYMPHP
successfully detected 78 (77.23%) out of 101 vulnerabilities.
Besides, SYMPHP even identified a previously unknown vul-
nerability in WebChess that remains in the latest version. We
have responsibly reported the vulnerability to the developers.
False Negatives. As a dynamic analysis approach, SYMPHP
has false negatives. We systematically analyzed the 23 missed
vulnerabilities and found 11 of them were because the
crawler could not successfully find the corresponding URLs.
Therefore, the relevant code was not exercised by SYMPHP
at all, leaving the vulnerabilities unexposed. Improving the
crawler or extending the crawling time can potentially miti-
gate this issue. For the remaining 12 cases, the URLs were
successfully extracted by the crawler but SYMPHP could not
generate a concrete input to trigger the vulnerabilities. Given
the complex and random nature of exploration in concolic
execution, we could not confidently conclude a cause for

3. Some vulnerabilities existing in the optional functionalities, e.g.,
WordPress plugins and themes, are not considered because they are not
included in the main codebase of the application by default.

them. Nevertheless, the false-negative rate is still considered
low, as compared to other dynamic analysis tools [18, 18, 28].
False Positives. We observed 12 false positive cases in
SYMPHP’s results. All of them are about XSS vulnerabilities.
This is basically because of the simple static XSS detector.
Our XSS detector statically checks if certain special payloads
exist in the response through literal textual matching. It
does not launch a browser to dynamically load the response
(including HTML and JavaScript). As a result, it still labels
vulnerabilities when the payloads appear in error information
or the responses with application/json content-type header.
Nevertheless, we do not emphasize the contribution of XSS
detection, and the issue can be resolved with more advanced
detection techniques [42, 43].

5.4.1. Comparison. We present the comparison results with
the state-of-the-art solutions.
Witcher. We find that the concrete inputs generated by
Witcher could directly trigger 37 (36.63%) vulnerabilities.
All of them were identified by SYMPHP since SYMPHP is
driven by the concrete inputs. SYMPHP could additionally
find 41 more vulnerabilities, which stands for a significant
improvement of 110.81% over Witcher.
XSym. SYMPHP significantly outperforms XSym in vul-
nerability detection. For six applications, XSym reached the
time limit (shown as TO) and could not finish the analysis.
It also aborted its analysis on one application because of
unexpected errors (shown as ERR). In the remaining ten
applications, XSym was able to find 34 (33.66%) known
vulnerabilities. This suggests that SYMPHP achieves a much
higher vulnerability detection efficacy and analysis applicabil-
ity. Among the 34 detected vulnerabilities, SYMPHP could
identify 30 of them. The reason why four vulnerabilities were
not identified by SYMPHP is that the corresponding URLs
were not uncovered by the crawler. Therefore, SYMPHP
did not test the scripts, leaving the vulnerability unexposed.
Conventional symbolic execution engines like XSym do not
require concrete inputs to drive the analysis and could identify
them via whole-application analysis. In our later investigation,
we manually feed the URLs to SYMPHP. SYMPHP could
also trigger the vulnerabilities within ten minutes. Therefore,
we believe this is not a limitation of SYMPHP—once the
URL is extracted, SYMPHP could identify it. XSym also
detected the same new vulnerability in WebChess.

We now investigate why XSym failed to analyze the seven
applications. The analysis of XSym is in two stages. The first
stage performs path forking and collects the corresponding
constraints for potentially vulnerable locations. In the second
stage, constraint solvers are invoked to check the feasibility
of the collected constraints. For the six TO cases, XSym did
not even advance to the second stage. The cause is probably
because of the path explosion in its simple path-forking
strategy. We also inspected the ERR case. We noticed a high
usage of memory, which could be a potential reason why
XSym aborted the analysis.

XSym has many false positives and negatives. XSym
missed all 46 vulnerabilities in the abovementioned seven

applications and 21 vulnerabilities on the remaining ten
applications. It also reported around 40 false positives.
Though interesting, it is hard to attribute every false case to
specific causes. Our analysis reveals that XSym’s incomplete
support of PHP features stands for an essential cause. Though
XSym aims to automatically analyze PHP internal functions,
it only supports PHP 3, which has become obsolete since
2000. Program paths with newer internal functions mostly
cannot be correctly analyzed. We have illustrated this in
the motivation example (§2.3). We additionally provide the
analysis of a false negative case in §B.
AnimateDead. Although not designed for vulnerability
detection, the vulnerabilities (i.e., vulnerable code locations)
preserved by AnimateDead can be used to (overly) approx-
imate its capability in vulnerability detection. As stated in
the paper [17], AnimateDead could reach 65% and 35% of
vulnerability locations in WordPress and phpMyAdmin, re-
spectively. SYMPHP achieved similar (if not better) detection
results on the two applications. Note that the estimation of
AnimateDead’s results is likely the upper bound because 1)
reaching code location does not necessarily mean triggering
the vulnerability, and 2) AnimateDead relaxes the path
constraints in its forced execution.

5.5. Understanding the Performance

We further evaluate the efficacy of the state scheduling
algorithm to help understand the performance of SYMPHP.
We also measure the system initialization overhead and the
performance difference in the concrete mode of SYMPHP
and concrete execution.
Efficacy of WebPC-Oriented State Scheduling. We design
SYMPHPns, a variant of SYMPHP with the WebPC-oriented
state scheduling disabled. It uses the default PC-based state
scheduling algorithm of S2E. We evaluate SYMPHPns on
the same dataset and present results of vulnerability detection
and code coverage in Table 2. Since SYMPHPns also uses
the concrete inputs generated by Witcher, it triggers all code
and vulnerabilities triggered by Witcher.

By comparing the SYMPHP’s and SYMPHPns’s im-
provements above Witcher, we conclude that our state
scheduling algorithm could greatly improve the exploration of
web applications. Specifically, we observe that SYMPHPns

has a similar performance to Witcher, demonstrating its negli-
gible improvements over Witcher. For example, SYMPHPns

could only identify one additional vulnerability in Drupal
9.0, and cover 4.83% more code compared to Witcher. As
mentioned earlier, the full-fledged SYMPHP could signifi-
cantly improve Witcher in both vulnerability discovery and
code coverage.
Initialization Overhead. SYMPHP has an initialization
phase, during which SYMPHP starts S2E’s virtual machine
to prepare the environment for the symbolic execution. We
measure the duration used for the initialization. Our results
find that SYMPHP takes around six to nine seconds to start
up. Note that the initialization overhead is independent of
target web applications. It normally needs to be done only

TABLE 3: Average RTT (millisecond) in concrete execution and
concrete mode of SYMPHP.

ID Concrete Exe. Concrete Mode Factor

1 258 1,729 6.70

2 247 1,076 4.35

3 198 1,391 7.14

4 419 3,163 7.55

5 381 1,738 4.56

6 48 181 3.77

7 261 2,817 10.79

8 378 2528 6.69

9 398 2,903 7.29

10 165 1,792 10.86

11 232 1,401 6.04

12 274 965 3.52

13 391 2,571 6.58

14 249 2,310 9.28

15 102 477 4.68

16 518 1943 3.76

17 498 2492 5.00

Average 295 1852 6.39

once for the analysis of a web application. We thus believe
the initialization overhead is negligible in continuous web
testing.
Overhead in Concrete Mode. When no symbolic input
is specified, SYMPHP runs in a concrete mode without the
symbolic backend invoked. We compare the processing time
in the concrete mode of SYMPHP to pure concrete execution.
To do this, we replay the collected concrete inputs on the
web applications deployed on a server. We measure the
round-trip time (RTT) from when a client sends a request to
when it receives the first response from the server. The client
and server are hosted on the same machine to eliminate the
network latency. Therefore, RTT can accurately reflect the
real processing time. We run the experiments in two settings:
1) concrete execution, and 2) concrete mode of SYMPHP.

The average RTT per application is shown in Table 3. In
concrete execution, most of the applications can process a
request in several hundred milliseconds. The concrete mode
of SYMPHP, which runs on S2E’s virtual machine, requires
around two thousand milliseconds on average. We calculate
the ratio between the two as a factor value. It shows that the
concrete mode of SYMPHP brings an average overhead of
6.39×. The overhead is mainly due to checks for memory
accesses according to the descriptions of Chipounov et al. [7].
Besides, access to database systems is also a reason.

5.6. Application of SYMPHP: Hybrid Fuzzing

Though the goal of this work is to generally advance con-
colic execution, we showcase one of its typical applications,

TABLE 4: New vulnerabilities discovered in hybrid fuzzing.

Application # Cmd Inj. # SQL Inj. # XSS

WebChess 7 1 1 2

OpenEMR 7.0.1 1 - -

Symfony 7.0 1 - -

Opencart 4.0 - 1 -

Silverstrip 5.0 - - 1

HSM 20 - - 2

hybrid fuzzing. We integrate SYMPHP with the state-of-
the-art fuzzer Witcher into a hybrid fuzzing framework. We
aim to check if and how well SYMPHP could supplement
fuzzing. XSym is a static symbolic execution engine, and it
cannot be directly used for hybrid fuzzing. Therefore, it is
excluded from this evaluation. We run Witcher in the master-
slave mode with two fuzzer instances. The two instances
can actively synchronize their favored inputs during testing.
We then start another instance of SYMPHP, which utilizes
the inputs generated by the fuzzer instances. The symbolic
execution instance also provides interesting inputs (GET,
POST, and Cookie data) to the fuzzer instances in return.
This is a basic way for implementing hybrid fuzzing [11, 20].
Other advanced techniques [47] can potentially improve our
naive hybrid fuzzing framework. However, we think they are
out of the scope of this research. Note that this is a different
setting to §5.4 as the instances of fuzzer and concolic
execution are running simultaneously and cooperatively. We
also run another version with only the fuzzer instances as
the baseline.

Since we have already evaluated SYMPHP on old ver-
sions of web applications and thoroughly analyzed its efficacy,
we mainly use the hybrid fuzzing framework to find new
vulnerabilities in the latest versions. We apply the framework
to a set of latest version web applications, most of which
correspond to the ones listed in Table 2. We found ten
previously unknown vulnerabilities, including three command
injections, two SQL injections (including the one mentioned
in §5.4), and five XSS. Details are shown in Table 4. It
is worth highlighting that we even identified one critical
vulnerability in the famous Symfony application, which
has been thoroughly tested by its developers. None of the
new vulnerabilities are discovered in the baseline with only
fuzzing. This demonstrates the optimistic effects of SYMPHP
in identifying real-world vulnerabilities. We have responsibly
disclosed all identified vulnerabilities to relevant vendors and
closely worked with the developers to confirm and fix them.
To date, the developers have confirmed two new cases.

We further depict the code coverage over time in Figure 4.
Since we separately test each URL, we accumulate the
covered code of all URLs at a time and show the sum within
the time budget of ten minutes. Due to the space limit,
we only present the results for four web applications where
SYMPHP has identified new vulnerabilities. The results show
that the hybrid fuzzing framework could improve the code

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

WebChess

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60
OpenEMR

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40
Symfony

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

Opencart

Hybrid Fuzzing Fuzzing

Figure 4: Code coverage (%) over time (hour).

coverage significantly by up to 85.71%, compared with the
baseline. This additionally proves the practical benefits of
SYMPHP to supplement dynamic fuzzing.

6. Discussion

State Changes. Web applications are stateful. Earlier execu-
tions have impacts on database states and future exploration.
In the two-step design of Witcher, the second step can
potentially operate on invalid or obsolete states. To mitigate
this state change problem, we currently restore target web
applications to the initial clean states for each entry URL.
To better solve it, one can take snapshots on the states [48]
and restore them when necessary. We leave it as a future
work.
State Scheduling Algorithm. SYMPHP employs a WebPC-
based state scheduling algorithm to address the inefficient
state scheduling issue. We have demonstrated that it could
allow SYMPHP to explore diverse locations and enhance
overall code coverage. However, the algorithm is based on
uniform randomness; each child node of the root node has
an equal probability of being selected. Numerous advanced
algorithms (e.g., weighted randomness, breadth-first-search,
depth-first-search) from the literature [7, 10, 49, 50] can
be applied to improve the current algorithm. For example,
one could customize SYMPHP to prioritize critical code
locations with higher weights for vulnerability validation.
Nevertheless, we believe the current strategy has paved a
good foundation for such enhancement or customization. We
thus leave this as a future work.
Runtime Overhead. The runtime overhead of SYMPHP can
be improved, as we present in §5.5. This can be mitigated by
using more efficient underlying symbolic execution engines.
Recent advances of compilation-based symbolic execution
approaches are desired directions to boost the performance
of SYMPHP. Though we failed to apply them as we present
in §A, we do not see any fundamental difficulty that prevents

us from using them once these engineering issues are fixed.
We are eager to work in this direction in the future.
Detecting Other Vulnerabilities. We can extend SYMPHP
to find other types of vulnerabilities by equiping other
vulnerabilities checkers. For example, FUSE [3] employs an
upload validator to detect file upload bugs. Black Widow [42]
checks the reflection of a given random token to identify
stored cross-site scripting vulnerabilities. FUGIO [51] checks
the execution trace of the injection objects to identify PHP
object injection vulnerabilities. SYMPHP can be directly
extended with these techniques. Moreover, to identify second-
order vulnerabilities [18, 52, 53], it might require to set
other results, e.g., database data, as symbolic. This could
be potentially achieved by hooking the relevant database
functions and marking the returned data as symbolic.
Analyzing Other Web Applications. SIA can be ported
to other interpreted programming languages like Python
and JavaScript by design. In our current implementation,
we developed the core part of SYMPHP in the underlying
engine, which takes as input the web application code and
the exposed WebPC. To extend SIA to other interpreted
languages, WebPC exposure is needed. Interpreters typically
contain a main interpretation loop that switches over the
instruction types and invokes specific handlers. Therefore,
WebPC exposure can be realized by enhancing the interpre-
tation loop with modest engineering. Besides, SIA is by no
means limited to only database-backed PHP applications. Our
preliminary investigation shows that SYMPHP can help test
standalone PHP libraries and applications. For example, we
have attempted to integrate SYMPHP with the PHP library
fuzzer, PHP-Fuzzer [54].

7. Related Work

Symbolic Execution. Symbolic execution has been widely
used for web security [14, 15, 17, 23, 24]. For example,
SYNTHDB [28] employs concolic execution to help generate
a comprehensive database for dynamic testing. MalMax [55]
leverages concolic execution to scan server-side malware.
As we introduced in §2.3, these symbolic execution engines
have non-trivial limitations such as the demand of excessive
engineering. SYMPHP is a completely different concolic
execution engine that is based on the idea of SIA. Bucur et
al. propose Chef to prototype symbolic execution engines for
Python and Lua [56]. However, Chef does not consider the
domain-specific issues of web applications such as database
interactions, web data processing, etc., which we have tackled
in this work.
Static Analysis for Web Applications. Static approaches
analyze the source code (or its representations) to identify
vulnerabilities. Especially, most of them apply taint analysis
to detect taint-style vulnerabilities such as SQL injection
and server-side cross-site scripting [1, 2, 26, 32, 57, 58].
For example, TChecker [2] and PHP Joern [26] transform
the source code of PHP-based web applications to code
property graphs and perform query-based analysis on the
graph. UChecker [58] and LChecker [32] are based on

abstract syntax trees generated by PHP-Parser [27]. SYMPHP
differs from these works as a concolic execution approach.
Nevertheless, static analysis can assist the exploration of
symbolic execution. For example, we can use static analysis
to pre-screen the web applications and leverage symbolic
execution engines like SYMPHP to selectively explore
potentially vulnerable paths.
Dynamic Analysis for Web Applications. Dynamic
approaches generate concrete inputs to test web applica-
tions [18, 42, 59]. Since web applications are dynamic
and stateful, many approaches model the states of web
applications, aiming to improve the coverage during dynamic
testing. Enemy of the State [59] infers the server-side states
by comparing the differences in response on the client
side. Navex [15] instead monitors on the server side by
tracking session creation and database queries. Besides,
jÄk [60] and Black Widow [42] also consider client-side
events such as form submissions. By modeling the states,
dynamic approaches can achieve better code coverage. We
demonstrated that SYMPHP could supplement dynamic
fuzzing in §5.6. SYMPHP would also benefit from state
models.

8. Conclusion

We have introduced SIA, a new and holistic concolic
execution approach for web applications. By leveraging
an off-the-shelf symbolic execution engine to analyze the
language interpreter, SIA addresses the intrinsic limitations of
prior solutions and achieves effective symbolic execution. Our
prototype implementation for PHP-based web applications
has demonstrated the merits of SIA in terms of language
syntax support, code coverage, vulnerability detection, and
hybrid fuzzing. We believe that SIA would open up new
possibilities for web application symbolic execution and
significantly enhance web security.

Acknowledgments

The authors would like to thank the anonymous reviewers
and the shepherd for their valuable suggestions. The authors
also thank the S2E team for open-sourcing such a remarkable
tool. The work described in this paper was supported in part
by a grant from the Research Grants Council of the Hong
Kong SAR, China (Project No.: CUHK 14209323).

References
[1] J. Dahse and T. Holz, “Simulation of built-in php features for precise

static code analysis,” in Proceedings of the 2014 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2014.

[2] C. Luo, P. Li, and W. Meng, “TChecker: Precise static inter-procedural
analysis for detecting taint-style vulnerabilities in php applications,”
in Proceedings of the 29th ACM Conference on Computer and
Communications Security (CCS), Los Angeles, CA, USA, Nov. 2022.

[3] T. Lee, S. Wi, S. Lee, and S. Son, “Fuse: Finding file upload bugs
via penetration testing.” in Proceedings of the 2020 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
USA, Feb. 2020.

[4] “How often do cyber attacks occur?” Jun. 2020, https://aag-it.com/
how-often-do-cyber-attacks-occur/.

[5] Q. Wu, Y. He, S. McCamant, and K. Lu, “Precisely characterizing
security impact in a flood of patches via symbolic rule comparison,”
in Proceedings of the 2020 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2020.

[6] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim, “Precise and scalable
detection of double-fetch bugs in os kernels,” in Proceedings of
the 39th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2018.

[7] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for
in-vivo multi-path analysis of software systems,” in Proceedings of
the 16th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Newport
Beach, CA, Mar. 2011.

[8] J. Song, C. Cadar, and P. Pietzuch, “Symbexnet: Testing network
protocol implementations with symbolic execution and rule-based
specifications,” IEEE Transactions on Software Engineering, 2014.

[9] F. Brown, D. Stefan, and D. Engler, “Sys: a static/symbolic tool for
finding good bugs in good (browser) code,” in Proceedings of the 29th
USENIX Security Symposium (Security), Boston, MA, Aug. 2020.

[10] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), San Diego, CA, Dec. 2008.

[11] S. Poeplau and A. Francillon, “Symbolic execution with symcc: Don’t
interpret, compile!” in Proceedings of the 29th USENIX Security
Symposium (Security), Boston, MA, Aug. 2020.

[12] C. Liu, Y. Chen, and L. Lu, “Kubo: Precise and scalable detection of
user-triggerable undefined behavior bugs in os kernel,” in Proceed-
ings of the 2021 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2021.

[13] “The php interpreter,” Dec. 2021, https://github.com/php/php-src.
[14] P. Li, W. Meng, K. Lu, and C. Luo, “On the feasibility of automated

built-in function modeling for php symbolic execution,” in Proceedings
of the Web Conference (WWW), Ljubljana, Slovenia, Apr. 2021.

[15] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan, “Navex:
Precise and scalable exploit generation for dynamic web applications,”
in Proceedings of the 27th USENIX Security Symposium (Security),
Baltimore, MD, Aug. 2018.

[16] W3Techs, “Usage statistics of PHP for websites,” Nov. 2023, https:
//w3techs.com/technologies/details/pl-php.

[17] B. A. Azad, R. Jahanshahi, C. Tsoukaladelis, M. Egele, and N. Niki-
forakis, “AnimateDead: Debloating web applications using concolic
execution,” in Proceedings of the 32nd USENIX Security Symposium
(Security), Anaheim, CA, USA, Aug. 2023.

[18] E. Trickel, F. Pagani, C. Zhu, L. Dresel, G. Vigna, C. Kruegel, R. Wang,
T. Bao, Y. Shoshitaishvili, and A. Doupé, “Toss a fault to your witcher:
Applying grey-box coverage-guided mutational fuzzing to detect sql
and command injection vulnerabilities,” in Proceedings of the 44th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, USA, May 2023.

[19] W3Techs, “Usage statistics and market share of WordPress,” Nov.
2023, https://w3techs.com/technologies/details/cm-wordpress.

[20] J. Chen, W. Han, M. Yin, H. Zeng, C. Song, B. Lee, H. Yin, and
I. Shin, “Symsan: Time and space efficient concolic execution via
dynamic data-flow analysis,” in Proceedings of the 31st USENIX
Security Symposium (Security), Boston, MA, USA, Aug. 2022.

[21] “Instrumenting program source code for s2e,” Nov. 2023, https://s2e.
systems/docs/Tutorials/BasicLinuxSymbex/SourceCode.html/.

[22] “Navex,” Nov. 2023, https://github.com/aalhuz/navex.
[23] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.

Ernst, “Finding bugs in dynamic web applications,” in Proceedings of
the 17th International Symposium on Software Testing and Analysis
(ISSTA), Seattle, WA, USA, Jul. 2008.

[24] ——, “Finding bugs in web applications using dynamic test generation
and explicit-state model checking,” IEEE Transactions on Software
Engineering, 2010.

[25] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in Proceedings
of the 35th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, USA, May 2014.

[26] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and flexible discovery of php application vulnerabilities,” in
Proceedings of the 2nd IEEE European Symposium on Security and
Privacy (EuroS&P), Paris, France, Apr. 2017.

[27] Nikic, “A PHP parser written in PHP,” Nov. 2023, https://github.com/
nikic/PHP-Parser.

[28] A. Chen, J. Lee, B. Chaulagain, Y. Kwon, and K. H. Lee, “Synthdb:
Synthesizing database via program analysis for security testing of
web applications,” in Proceedings of the 2023 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, USA,
Feb. 2023.

[29] “Mysql,” Nov. 2023, https://www.mysql.com/.
[30] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical

concolic execution engine tailored for hybrid fuzzing,” in Proceedings
of the 27th USENIX Security Symposium (Security), Baltimore, MD,
USA, Aug. 2018.

[31] “Reflected xss,” Nov. 2023, https://owasp.org/www-community/
attacks/xss/#reflected-xss-attacks.

[32] P. Li and W. Meng, “Lchecker: Detecting loose comparison bugs
in php,” in Proceedings of the Web Conference (WWW), Ljubljana,
Slovenia, Apr. 2021.

[33] “Codiad,” Nov. 2023, https://github.com/Codiad/Codiad.
[34] “Mediawiki,” Nov. 2023, https://www.mediawiki.org/wiki/MediaWiki.
[35] “Wordpress,” Nov. 2023, https://wordpress.com/.
[36] “Phpbb,” Nov. 2023, https://www.phpbb.com/.
[37] “Drupal,” Nov. 2023, https://drupal.org/.
[38] “Openemr,” Nov. 2023, https://www.open-emr.org/.
[39] “Docker container for navex,” Nov. 2023, https://github.com/aalhuz/

navex/issues/3.
[40] “Code is not complete,” Nov. 2023, https://github.com/aalhuz/navex/

issues/6.
[41] “Animatedead,” Nov. 2023, https://github.com/silverfoxy/distributed_

animate_dead.
[42] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox

data-driven web scanning,” in Proceedings of the 42nd IEEE Sympo-
sium on Security and Privacy (Oakland), San Francisco, CA, USA,
May 2021.

[43] O. van Rooij, M. A. Charalambous, D. Kaizer, M. Papaevripides, and
E. Athanasopoulos, “webfuzz: Grey-box fuzzing for web applications,”
in Proceedings of the 26th European Symposium on Research in
Computer Security (ESORICS), Virtual event, Oct. 2021.

[44] “Php-src,” Nov. 2023, https://github.com/php/php-src/tree/master/tests.
[45] “Xdebug,” Nov. 2023, https://xdebug.org/.
[46] B. A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is more:

Quantifying the security benefits of debloating web applications.”
in Proceedings of the 28th USENIX Security Symposium (Security),
Santa Clara, CA, USA, Aug. 2019.

[47] L. Jiang, H. Yuan, M. Wu, L. Zhang, and Y. Zhang, “Evaluating and
improving hybrid fuzzing,” in Proceedings of the 45th International
Conference on Software Engineering (ICSE), Melbourne, Australia,
May 2023.

[48] E. Güler, S. Schumilo, M. Schloegel, N. Bars, P. Görz, X. Xu,
C. Kaygusuz, and T. Holz, “Atropos: Effective fuzzing of web
applications for server-side vulnerabilities,” in Proceedings of the
33rd USENIX Security Symposium (Security), Philadelphia, PA, USA,
Aug. 2024.

https://aag-it.com/how-often-do-cyber-attacks-occur/
https://aag-it.com/how-often-do-cyber-attacks-occur/
https://github.com/php/php-src
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/cm-wordpress
https://s2e.systems/docs/Tutorials/BasicLinuxSymbex/SourceCode.html/
https://s2e.systems/docs/Tutorials/BasicLinuxSymbex/SourceCode.html/
https://github.com/aalhuz/navex
https://github.com/nikic/PHP-Parser
https://github.com/nikic/PHP-Parser
https://www.mysql.com/
https://owasp.org/www-community/attacks/xss/#reflected-xss-attacks
https://owasp.org/www-community/attacks/xss/#reflected-xss-attacks
https://github.com/Codiad/Codiad
https://www.mediawiki.org/wiki/MediaWiki
https://wordpress.com/
https://www.phpbb.com/
https://drupal.org/
https://www.open-emr.org/
https://github.com/aalhuz/navex/issues/3
https://github.com/aalhuz/navex/issues/3
https://github.com/aalhuz/navex/issues/6
https://github.com/aalhuz/navex/issues/6
https://github.com/silverfoxy/distributed_animate_dead
https://github.com/silverfoxy/distributed_animate_dead
https://github.com/php/php-src/tree/master/tests
https://xdebug.org/

[49] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less
traveled paths,” in Proceedings of the 24th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Indianapolis, IN, USA, Oct. 2013.

[50] K.-K. Ma, K. Yit Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in 18th International Symposium (SAS), Venice, Italy, Sep.
2011.

[51] S. Park, D. Kim, S. Jana, and S. Son, “Fugio: Automatic exploit
generation for php object injection vulnerabilities,” in Proceedings of
the 31st USENIX Security Symposium (Security), Boston, MA, USA,
Aug. 2022.

[52] J. Dahse and T. Holz, “Static detection of second-order vulnerabilities
in web applications,” in Proceedings of the 23rd USENIX Security
Symposium (Security), San Diego, CA, USA, Aug. 2014.

[53] O. Olivo, I. Dillig, and C. Lin, “Detecting and exploiting second order
denial-of-service vulnerabilities in web applications,” in Proceedings
of the 22nd ACM Conference on Computer and Communications
Security (CCS), Denver, CO, USA, Oct. 2015.

[54] “Php fuzzer,” Nov. 2023, https://github.com/nikic/PHP-Fuzzer.
[55] A. Naderi-Afooshteh, Y. Kwon, A. Nguyen-Tuong, A. Razmjoo-

Qalaei, M.-R. Zamiri-Gourabi, and J. W. Davidson, “Malmax: Multi-
aspect execution for automated dynamic web server malware analysis,”
in Proceedings of the 26th ACM Conference on Computer and
Communications Security (CCS), London, UK, Nov. 2019.

[56] S. Bucur, J. Kinder, and G. Candea, “Prototyping symbolic execution
engines for interpreted languages,” in Proceedings of the 19th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Salt Lake City, UT,
USA, Mar. 2014.

[57] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool
for detecting web application vulnerabilities,” in Proceedings of the
27th IEEE Symposium on Security and Privacy (Oakland), Oakland,
CA, USA, May 2006.

[58] J. Huang, Y. Li, J. Zhang, and R. Dai, “Uchecker: Automatically
detecting php-based unrestricted file upload vulnerabilities,” in Pro-
ceedings of the 2019 International Conference on Dependable Systems
and Networks (DSN), Portland, OR, USA, Jun. 2019.

[59] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:
A state-aware black-box web vulnerability scanner,” in Proceedings
of the 21st USENIX Security Symposium (Security), Bellevue, WA,
USA, Aug. 2012.

[60] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “jäk: Using
dynamic analysis to crawl and test modern web applications,” in
Proceedings of the 18th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), Kyoto, Japan, Nov. 2015.

[61] “Clang: a c language family frontend for llvm,” Nov. 2023, https:
//clang.llvm.org/.

[62] “Wllvm,” Nov. 2023, https://github.com/travitch/whole-program-llvm.
[63] “Klee issue 678,” Nov. 2023, https://github.com/klee/klee/issues/678.
[64] “Support latest kernel and compilers,” Nov. 2023, https://github.com/

sslab-gatech/qsym/issues/4.
[65] “Cve-2020-36243 detail,” Nov. 2023, https://nvd.nist.gov/vuln/detail/

CVE-2020-36243.

Appendix A.
Experience in Attempting Other Engines

We have tried other options including KLEE [10],
QSYM [30], SymCC [11], and SymSan [20]. Though they
were reported to be effective, we failed to successfully apply
them to any recent versions of the PHP interpreters. In
particular, KLEE [10] requires first compiling the target pro-
gram into LLVM bitcode. We leveraged clang compiler [61]

and WLLVM [62] to produce the LLVM bitcode. However,
the bitcode could not be successfully analyzed by KLEE
due to intrinsic instructions such as saturating arithmetic
intrinsic instructions. We followed the instructions of KLEE
and attempted to manually add wrapper functions for some
intrinsic instructions [63]. We ultimately had to abandon it
due to the large number of unsupported intrinsic instructions.
QSYM [30] also did not work in our analysis due to the
unresolved dependency of a newer version of PIN [64]. Its
code repository on GitHub has been archived and is no
longer maintained since March 2023.

SymCC [11] and SymSan [20] are two recent
compilation-based concolic execution engines for C/C++
programs. However, the two engines are not robust according
to our experience. Specifically, we first used their compilation
component (i.e., enhanced clang compiler) to compile the
PHP interpreter. Unfortunately, their compilation component
raised several unexpected exceptions. Our attempts to fix the
errors were unsuccessful after weeks of engineering.

Appendix B.
A False Negative of XSym

Listing 4 shows a missed vulnerability of XSym. The ap-
plication issues a system command to delete existing records
in a database table. The command injection vulnerability
occurs when the improperly sanitized user data flows to
the system command (line 21). The application only uses
add_escape_custom() function to prevent SQL injection at
line 10. However, it does not fully protect the application
against command injection. XSym could not identify the
command injection because it does not correctly handle
the mysqli_real_escape_string() function that performs
sanitization.

1 <?php
2 function add_escape_custom($s) {
3 //prepare for safe mysql insertion
4 $s = mysqli_real_escape_string($GLOBALS['dbh'], $s);
5 return $s;
6 }
7

8 foreach ($_POST['form_sel_layouts'] as $layoutid) {
9 if (IS_WINDOWS) {

10 $cmd .= " echo DELETE FROM layout_options WHERE form_id
= '" . add_escape_custom($layoutid) . "'; >> " .
escapeshellarg($EXPORT_FILE) . " & ";

↪→
↪→

11 }
12 else {
13 $cmd .= "echo \"DELETE FROM layout_options WHERE

form_id = '" . add_escape_custom($layoutid) . "';\"
>> " . escapeshellarg($EXPORT_FILE) . ";";

↪→
↪→

14 }
15 }
16

17 exec($cmd);

Listing 4: CVE-2020-36243 [65] in OpenEMR 5.0.2.

https://github.com/nikic/PHP-Fuzzer
https://clang.llvm.org/
https://clang.llvm.org/
https://github.com/travitch/whole-program-llvm
https://github.com/klee/klee/issues/678
https://github.com/sslab-gatech/qsym/issues/4
https://github.com/sslab-gatech/qsym/issues/4
https://nvd.nist.gov/vuln/detail/CVE-2020-36243
https://nvd.nist.gov/vuln/detail/CVE-2020-36243

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper presents a novel method to utilize mature
symbolic execution engines for low-level languages to handle
higher-level languages like PHP, without the need for manual
modeling of functions. With their new technique called
Symbolic Interpreter Analysis (SIA), the authors enhance the
way how web applications based on interpreted languages
are tested. Since web app code is handled by the interpreter,
they symbolically analyze the interpreter code to indirectly
analyze the application. This new approach is implemented
in their tool SymPHP, a concolic execution engine for PHP-
based web applications. They compare their tool against
other tools as well as use it together with fuzzing to find
new vulnerabilities.

C.2. Scientific Contributions

• Creates a New Tool to Enable Future Science

• Addresses a Long-Known Issue
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

C.3. Reasons for Acceptance

1) The work presents a different approach to an already
established field by using the analysis of language
interpreter as an execution engine for symbolic analysis
of web applications, which resolves several issues.

2) The method and tool reduce the required manual efforts,
making it easier for both industry and academia to use
and build on. Multiple future tracks can be built on this
as they plan to make it publicly available.

3) They showed that their tool can be used to discover
new vulnerabilities in PHP Web applications.

C.4. Noteworthy Concerns

The comparison was only done with tools with different
technological backgrounds. Also, Witcher was used to gen-
erate the input links for SymPHP, which naturally results in
SymPHP outperforming it.

	Introduction
	Background and Motivation
	Web Applications
	Symbolic Execution
	Motivation

	Insight
	Revisiting Concrete Execution
	Symbolic Execution of Interpreter Code
	SIA: Symbolic Interpreter Analysis
	SIA in an Example
	Challenges and Solutions

	SymPHP
	Underlying Symbolic Execution Engine
	Handling Symbolic Data
	Symbolic Web Input Specification
	Tracking Symbolic Data
	Concretizing Queries for Database Operations

	Exploration Strategy
	WebPC Exposure
	WebPC-Oriented State Scheduling

	Implementation

	Evaluation
	Experimental Setup
	Syntax Support
	Code Coverage
	Vulnerability Detection
	Comparison

	Understanding the Performance
	Application of SymPHP: Hybrid Fuzzing

	Discussion
	Related Work
	Conclusion
	Appendix A: Experience in Attempting Other Engines
	Appendix B: A False Negative of XSym
	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

